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Introdução

A recente expansão do mercado de modelos de aprendizado de máquina (ML — machine learning)

esteve ancorada não só no desenvolvimento de modelos mais sofisticados para resolver problemas

complexos, como o uso de Transformers para problemas de processamento de linguagem natural

e geração de imagens, mas também no aumento quantitativo no número de parâmetros dos

modelos.

Para servir esses grandes modelos e atender cada vez mais usuários, novos datacenters estão sendo

construídos no mundo todo, tornando necessário analisar o impacto ecológico dessa expansão.

Neste trabalho, avaliou-se o gasto de energia e consequente emissão de gases poluentes pelas

implementações de modelos de ML, explorando modelos para o cálculo dessas emissões de forma

independente, e métodos para reduzí-las.

Formas de Emissão

Na literatura, é comum encontrar a divisão das formas de emissão entre dois tipos:

▶ o carbono incorporado (embodied carbon), correspondente às emissões que ocorrem durante o

processo de produção das peças de hardware que compõem um computador ou data center.

▶ o carbono operacional (operational carbon), correspondente às emissões resultantes do funciona-

mento do hardware, seja executando o treinamento e inferência de modelos ou em períodos

ociosos.

Carbono Incorporado

Estima-se que, em 2020, o carbono incorporado representava 30% das emissões nas implementações

de grandes modelos de ML no Facebook (atual Meta). (Wu et al., 2022) Essa proporção é maior

para servidores e computadores que utilizam energia mais limpa (ou, com menor intensidade de

carbono) e para celulares.

Calcular o carbono incorporado é um processo complexo, pois depende do fornecimento de

dados precisos por parte de todas as partes envolvidas no processo produtivo, como ilustrado no

diagrama abaixo.

(Gupta et al., 2022) propuseram o modelo ACT, que estima:

▶ as emissões E de CPUs, GPUs e outras unidades de processamento a partir do tipo de pastilha

(CPA — carbono por área) e a eficiência (Y — yield) na produção do semicondutor utilizado,

como na fórmula:

𝐸 =
1
𝑌

∗ área ∗ 𝐶𝑃𝐴

▶ as emissões E de HDDs, SSDs e outros componentes de armazenamento pela quantidade de

carbono emitido por byte a ser armazenado (CPB — carbono por byte), como em:

𝐸 = capacidade em bytes ∗ 𝐶𝑃𝐵

CPA e CPB são, a princípio, valores publicados pelos fabricantes de componentes, e representam

tanto o dióxido de carbono (CO2), quanto os outros diversos gases causadores de efeito estufa

emitidos ou empregados na produção de peças de hardware, como o trifluoreto de nitrogênio (NF3)

e os perfluorocarbonetos (PFCs), a partir da equivalência de carbono de cada um desses gases, ou

seja, a razão entre o potencial de aquecimento global do gás e o potencial do CO2.

No que tange às unidades de processamento, GPUs têm carbono incorporado maior que CPUs,

por terem áreas maiores. Já nos componentes de armazenamento, SSDs têm maior CPB que HDDs.

Portanto, é necessário encontrar um balanço na arquitetura de datacenters a fim de utilizar cada

componente de forma mais eficiente, minimizando emissões desnecessárias.

Diagrama do Modelo ACT (Gupta et al., 2022)

Carbono Operacional

O carbono operacional tem alta relação com o tempo de execução dos programas. Portanto,

quando não é possível medí-lo empiricamente, com a ajuda de profilers, ainda é possível estimá-lo

a partir do número de operações de ponto flutuante (FLOPs — floating point operations) realizadas

durante a execução. (Faiz et al., 2024) propuseram o modelo LLMCarbon, projetado para modelos

de linguagem mas extensível para outros modelos.

Primeiro, calcula-se a utilização de FLOPs pelo modelo (MFU — model FLOP utilization), métrica

de eficiência proposta por (Chowdhery et al., 2023)

MFU =
𝐹 ∗ 𝑇
𝑀

Onde:

▶ F — FLOPs por token gerado

▶ T — tokens gerados por segundo

▶ M — máximo de FLOPs por segundo que podem ser executados pelo hardware
Depois, as emissões E podem ser estimadas como:

𝐸 = 𝑊 ∗ MFU ∗ 𝑠 ∗ 𝑁 ∗ PUE ∗ IC

Onde:

▶ W — potência máxima da unidade de processamento (CPU, GPU, FPGA etc.), em watts
▶ s — tempo de execução em segundos

▶ N — número de unidades de processamento

▶ PUE — eficiência no uso de energia (power usage efficiency), razão entre o total de

energia gasto pelo datacenter e o total gasto pelos computadores em si

▶ IC — intensidade de carbono da fonte de energia, ou seja, a quantidade de

gramas de CO2 emitido por watt-segundo de energia gerado.

Formas de Redução do Carbono Operacional

Baseados em reduzir o número de FLOPs realizados:
▶ Escolher hiperparâmetros que resultam em menos operações

▶ Atualização seletiva de parâmetros durante o treinamento ou ajuste fino

▶ Técnicas de redução do conjunto de dados de treinamento, como pular mini-batches
de exemplos estocasticamente, como proposto por (Wang et al., 2019)

Baseados em otimizar a utilização do hardware:

▶ Otimizar a distribuição dos parâmetros na memória das GPUs e

afins para minimizar o número de carregamentos

▶ Combinar operações consecutivas em um único comando para a GPU

▶ Analisar custo-benefício entre a frequência operante das GPUs e a latência

▶ Particionar a GPU entre modelos semelhantes porém de tamanhos distintos

(modelos de qualidade mista — mixed quality, como em (Li et al., 2023))

Também é essencial maximizar a utilização de energia com menor intensidade de carbono, como a

energia eólica, nuclear ou solar, além de maximizar o PUE das instalações, com melhores técnicas

de resfriamento e de contenção do calor gerado pelo hardware.

Os métodos de redução de FLOPs citados envolvem simplificar os modelos e seus processos de

treinamento, frequentemente resultando em métricas de performance piores, dificultando suas

adoções na indústria. Otimizações a nível de hardware não apresentam esse revés, mas, por sua

vez, podem ser pouco generalizáveis devido à variablidade entre as arquiteturas das unidades de

processamento.

Conclusão

Determinar o consumo de energia e o impacto ecológico das recentes evoluções no mercado de

ML é um processo ainda bastante difícil, pois depende de informações raramente divulgadas pelas

grandes empresas do meio, tanto informações de consumo direto quanto dados que permitam

estimá-los indiretamente, como o número de parâmetros dos modelos, hardware utilizado e

intensidade de carbono das fontes de energia.

Por isso, é necessário que haja maior transparência por parte dessas empresas na divulgação

desses dados e de novas descobertas que permitam otimizar a implementação dos modelos,

reduzindo tempos de processamento e, consequentemente, o gasto energético.
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