Consumo de Energia e Emissao de Poluentes na Implementacao

de Modelos de Aprendizado de Maquina

Introducao

A recente expansao do mercado de modelos de aprendizado de maquina (ML — machine learning)
esteve ancorada nao sé no desenvolvimento de modelos mais sofisticados para resolver problemas
complexos, como o uso de Transformers para problemas de processamento de linguagem natural
e geracao de imagens, mas também no aumento quantitativo no namero de parametros dos
modelos.

Para servir esses grandes modelos e atender cada vez mais usuarios, novos datacenters estao sendo
construidos no mundo todo, tornando necessario analisar o impacto ecolégico dessa expansao.

Neste trabalho, avaliou-se o gasto de energia e consequente emissao de gases poluentes pelas
implementacoes de modelos de ML, explorando modelos para o calculo dessas emissdes de forma
independente, e métodos para reduzi-las.

Formas de Emissao

Na literatura, € comum encontrar a divisao das formas de emissao entre dois tipos:

» o carbono incorporado (embodied carbon), correspondente as emissdes que ocorrem durante o
processo de producao das pecas de hardware que compdem um computador ou data center.

» o carbono operacional (operational carbon), correspondente as emissoes resultantes do funciona-
mento do hardware, seja executando o treinamento e inferéncia de modelos ou em periodos
0CI0SO0S.

Carbono Incorporado

Estima-se que, em 2020, o carbono incorporado representava 30% das emissdes nas implementacoes
de grandes modelos de ML no Facebook (atual Meta). (Wu et al., 2022) Essa proporc¢ao é maior
para servidores e computadores que utilizam energia mais limpa (ou, com menor intensidade de
carbono) e para celulares.

Calcular o carbono incorporado é um processo complexo, pois depende do fornecimento de
dados precisos por parte de todas as partes envolvidas no processo produtivo, como ilustrado no
diagrama abaixo.

(Gupta et al., 2022) propuseram o modelo ACT, que estima:

» as emissoes E de CPUs, GPUs e outras unidades de processamento a partir do tipo de pastilha
(CPA — carbono por area) e a eficiéncia (Y — yield) na producao do semicondutor utilizado,
como na féormula:

1
E:?*érea*CPA
» as emissoes E de HDDs, SSDs e outros componentes de armazenamento pela quantidade de
carbono emitido por byte a ser armazenado (CPB — carbono por byte), como em:

E = capacidade em bytes « CPB

CPA e CPB sao, a principio, valores publicados pelos fabricantes de componentes, e representam
tanto o didéxido de carbono (CO3), quanto os outros diversos gases causadores de efeito estufa
emitidos ou empregados na producao de pecas de hardware, como o trifluoreto de nitrogénio (NF3)
e os perfluorocarbonetos (PFCs), a partir da equivaléncia de carbono de cada um desses gases, ou
seja, a razao entre o potencial de aquecimento global do gas e o potencial do COs,.

No que tange as unidades de processamento, GPUs tém carbono incorporado maior que CPUs,
por terem areas maiores. Ja nos componentes de armazenamento, SSDs tém maior CPB que HDDs.
Portanto, é necessario encontrar um balanco na arquitetura de datacenters a fim de utilizar cada
componente de forma mais eficiente, minimizando emissdes desnecessarias.

Diagrama do Modelo ACT (Gupta et al., 2022)

Carbono Operacional

O carbono operacional tem alta relacao com o tempo de execucao dos programas. Portanto,
quando nao é possivel medi-lo empiricamente, com a ajuda de profilers, ainda é possivel estima-lo
a partir do nimero de operagoes de ponto flutuante (FLOPs — floating point operations) realizadas
durante a execucdo. (Faiz et al., 2024) propuseram o modelo LLMCarbon, projetado para modelos
de linguagem mas extensivel para outros modelos.

Primeiro, calcula-se a utilizacao de FLOPs pelo modelo (MFU — model FLOP utilization), métrica
de eficiéncia proposta por (Chowdhery et al., 2023)

F«T

MFU =

Onde:

» F — FLOPs por token gerado

» T — tokens gerados por segundo

» M — maximo de FLOPs por segundo que podem ser executados pelo hardware
Depois, as emissoes E podem ser estimadas como:

E=WxMFU x s+ N x PUE % IC

Onde:

» W — poténcia maxima da unidade de processamento (CPU, GPU, FPGA etc.), em watts

» s — tempo de execucdao em segundos

» N — numero de unidades de processamento

» PUE — eficiéncia no uso de energia (power usage efficiency), razao entre o total de
energia gasto pelo datacenter e o total gasto pelos computadores em si

» IC — intensidade de carbono da fonte de energia, ou seja, a quantidade de
gramas de CO3 emitido por watt-segundo de energia gerado.

Formas de Reducao do Carbono Operacional

Baseados em reduzir o nimero de FLOPs realizados:

» Escolher hiperparametros que resultam em menos operacoes

» Atualizacao seletiva de parametros durante o treinamento ou ajuste fino

» Técnicas de reducao do conjunto de dados de treinamento, como pular mini-batches
de exemplos estocasticamente, como proposto por (Wang et al., 2019)

Baseados em otimizar a utilizacao do hardware:
» Otimizar a distribuicao dos parametros na memoria das GPUs e
afins para minimizar o nimero de carregamentos
» Combinar operacdes consecutivas em um unico comando para a GPU
» Analisar custo-beneficio entre a frequéncia operante das GPUs e a laténcia
» Particionar a GPU entre modelos semelhantes porém de tamanhos distintos
(modelos de qualidade mista — mixed quality, como em (Li et al., 2023))

Também é essencial maximizar a utilizacao de energia com menor intensidade de carbono, como a
energia edlica, nuclear ou solar, além de maximizar o PUE das instalacdes, com melhores técnicas
de resfriamento e de contencao do calor gerado pelo hardware.

Os métodos de reducao de FLOPs citados envolvem simplificar os modelos e seus processos de
treinamento, frequentemente resultando em métricas de performance piores, dificultando suas
adocoes na industria. Otimizagdes a nivel de hardware nao apresentam esse revés, mas, por sua
vez, podem ser pouco generalizaveis devido a variablidade entre as arquiteturas das unidades de
processamento.
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Determinar o consumo de energia e o impacto ecologico das recentes evolugdes no mercado de
ML é um processo ainda bastante dificil, pois depende de informacdes raramente divulgadas pelas
grandes empresas do meio, tanto informacoes de consumo direto quanto dados que permitam
estima-los indiretamente, como o numero de parametros dos modelos, hardware utilizado e
intensidade de carbono das fontes de energia.

Por isso, é necessario que haja maior transparéncia por parte dessas empresas na divulgacao
desses dados e de novas descobertas que permitam otimizar a implementacao dos modelos,
reduzindo tempos de processamento e, consequentemente, o gasto energético.
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