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Resumo

Luca Diogo da Silva. Uma Analise sobre Gasto de Energia e Emissao de Poluentes
nas Aplicacdes de Aprendizado de Maquina. Monografia (Bacharelado). Instituto de

Matematica e Estatistica, Universidade de Sao Paulo, Sao Paulo, 2025.

A atual expansio do mercado de modelos de aprendizado de maquina (ML — machine learning) esteve
ancorada ndo s6 no desenvolvimento de modelos mais sofisticados para resolver problemas complexos,
como o uso de Transformers para problemas de processamento de linguagem natural e geracdo de imagens,
mas também no aumento quantitativo no nimero de parametros dos modelos. Para servir esses grandes
modelos e atender a cada vez mais usuarios, novos datacenters estio sendo construidos no mundo todo,
tornando necessario analisar o impacto ecologico dessa expansio. Essa analise néo é trivial porque os dados
de consumo das maiores aplicacdes de ML — geralmente modelos de linguagem em aplica¢des comerciais
— raramente sdo divulgados de forma detalhada, assim como configura¢des do modelo e de hardware que
permitiriam a replicacdo dos processos de treinamento e inferéncia. Neste trabalho, avaliou-se o gasto de
energia e consequente emissio de gases poluentes pelas implementacdes de modelos de ML, explorando

modelos para o calculo dessas emissdes de forma independente, e métodos para reduzi-las.

Palavras-chave: energia. emissdes de poluentes. diéxido de carbono. aprendizado de maquina. grandes

modelos de linguagem. inteligéncia artificial.






Abstract

Luca Diogo da Silva. Uma Analise sobre Gasto de Energia e Emissao de Poluentes
nas Aplicacoes de Aprendizado de Maquina. Capstone Project Report (Bachelor).

Institute of Mathematics and Statistics, University of Sdo Paulo, Sdo Paulo, 2025.

The current expansion of the machine learning model market has been based not only on the development
of more sophisticated models capable of solving complex problems, such as the use of Transformers for
natural language processing problems and image generation, but on a rise of the models’ numbers of
parameters. To serve these larger models to an increasing amount of users, new datacenters are being
built all over the worlds, which makes analysing the ecological impact of this expansion a necessary effort.
This analysis is far from trivial because usage and resource consumption data of the major applications of
ML — usually language models in commercial applications — are hardly ever published with appropriate
detail; neither are the model and hardware settings that would make replicating the training and inference
processes possible. In this work, we study the energy consumption and the resulting emission of polluting
gases by implementations of ML models, exploring ways to calculate those emissions independently, and

also ways to reduce them.

Keywords: energy. pollutant emissions. carbon dioxide. machine learning. large language models. artificial

intelligence.
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Introducao

A inteligéncia artificial (IA), em particular as técnicas de aprendizado de maquina
(machine learning — ML), tém sido uma das principais areas de pesquisa na computacéo
dos ultimos anos, pois o uso das redes neurais, com sua capacidade de aproximar qualquer
fungao continua, é o melhor método encontrado até agora para a resolucdo computacional
de varios problemas, como o reconhecimento de imagem e audio, predi¢cao da estrutura
tridimensional de proteinas e o processamento de linguagem natural (natural language
processing — NLP).

Essa dltima aplicagdo recebeu um salto qualitativo em 2017 com a publicacido do
artigo Attention Is All You Need, em que pesquisadores da Google Brain descreveram
pela primeira vez os modelos Transformers, cujo mecanismo de “atencdo” (attention) se
mostrou mais eficiente na codificagio de relacdes sintaticas e semanticas entre as palavras
— ou tokens — de um texto quando comparados aos modelos com recorréncia, até entdo
considerados estado-da-arte (VASWANT et al., 2023). Esses modelos, combinados aos modelos
de difusdo usados na geracio de imagens e videos, sdo a base da chamada “TIA generativa”
e estdo no centro do dltimo boom mercadologico da IA que se iniciou ao final de 2022,
quando a organizagao OpenAl disponibilizou o ChatGPT, um chatbot baseado nos modelos
proprietarios GPT (generative pre-trained Transformers — Transformers generativos pré-
treinados).

Desde entao, segundo pesquisa anual da empresa de consultoria McKinsey, a por-
centagem de empresas que relataram, nas pesquisas anuais da consultoria, usar IA em
pelo menos um de seus processos internos cresceu de 50% a 88% entre 2022 e 2025, e,
especificamente, de 33% para 79% no uso de IA generativa (SINGLA et al., 2025), como
mostra a Figura 1. Ja a OpenAl relatou que entre 2024 e 2025, o nimero de prompts diarios
aumentou mais de cinco vezes, de 451 milhdes para 2,63 bilhoes prompts feitos por 700
milhdes de usuarios (CHATTERJI et al.,, 2025), enquanto o Gemini, concorrente do ChatGPT
desenvolvido pela Google, atinge 350 milhdes de usuarios por més, como descrito em
documentos internos da empresa publicados durante o julgamento antitruste em curso
nos Estados Unidos (D1az, 2025).

Além do aumento do nimero de usuarios, e, portanto, de inferéncias, os modelos que
compdem os mais populares produtos de IA também estdo cada vez maiores. Em 2015,
antes do advento dos Transformers, engenheiros da Digital Reasoning ja haviam divulgado
a criacdo de um modelo de 160 bilhdes de parametros para NLP (Trask et al, 2015). O
GPT-3, de 2020, base das primeiras versdes do ChatGPT, foi o ultimo modelo da OpenAlI a
ter a sua quantidade de parametros publicada: 175 bilhdes de pardmetros. Estima-se que



SUMARIO

Use of Al by respondents’ organizations, % of respondents
Organizations that use Al in at least 1 business function'

100

88

Use of Al

Use of gen Al
33

20

=

2017 2018 2019 2020 2021 2022 2023 2024 2025

Figura 1: Uso de ferramentas de IA por empresas entrevistadas pela McKinsey (SINGLA et al., 2025)

tanto os GPTs 4 e 5, quanto seus concorrentes de performance similar como o Google
Gemini e Anthropic Claude Opus, tenham parametros na ordem de trilhdes, tomando
como referéncia os modelos DeepSeek v3, com 671 bilhdes de parametros (DEEPSEEK-AI
et al., 2025), e Qwen3-Max, da Alibaba Cloud, com “mais de 1 trilhdo” (TEAM, 2025). Esses
modelos estado-da-arte, por via de regra, usam apenas uma parte desses parametros em
cada inferéncia, lancando mao do mecanismo de mistura de especialistas (mixture-of-
experts - MoE), onde — como mostra a Figura 2 — na camada final dos Transformers, a
grande rede neural que gera o proximo token é substituida por um conjunto de redes
menores, das quais apenas uma é selecionada pelo modelo a cada token, a partir de uma
outra rede neural anterior — chamada de roteadora (router) — geradora de probabilidades
para cada especialista. Ainda assim, o nimero de parametros ativos em uma inferéncia
é provavelmente crescente entre os modelos comerciais.

Para servir esses modelos cada vez mais computacionalmente caros para mais usuarios,
ha uma grande expansdo na quantidade e tamanho de datacenters pelo mundo, resultando
num aumento no consumo total de energia. De acordo com outra pesquisa da McKinsey,
a demanda global por poténcia energética de datacenters pode crescer de 55 gigawatts
para 171 a 298 gigawatts entre 2025 e 2030, ou seja, crescimentos anuais entre 19% e 27%
(SRIVATHSAN et al., 2024). Ja o Lawrence Berkeley National Laboratory estimou em 2024
que o consumo total de energia por instalacdes nos EUA ir de 176 TWh (terawatts-hora)
por ano para 580 TWh, representando 12% do consumo no pais (SHEHABI et al., 2024).

O alto consumo energético pode ter um grande impacto ecoldgico caso a fonte ener-
gética utilizada tenha alta intensidade de carbono (IC), isto é, emitem mais didéxido de
carbono (CO,) por watt-hora de energia produzida. A regido norte do estado da Virginia,
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Figura 2: Diferenca entre blocos de decodificacio de Transformers tradicionais e com MoE (CHAWLA,
2025)

onde, de acordo com a Synergy Research Group, esta localizado 14% dos datacenters de
hiperescala, medido em poténcia energética, é bastante dependente de fontes de alta IC:
por volta de 62% da energia utilizada no estado vem do gas natural (Synergy Identifies the
World’s Top 20 Locations for Hyperscale Data Centers 2024).

E comum empresas tentarem compensar essas emissdes pela compra de certificados de
energia renovaveis (renewable energy certificate — REC), que comprovam um investimento
e uso de energia renovavel nas instalacdes da empresa. Contudo, como um REC pode ser
emitido em qualquer parte dos EUA, a sua emissdo ndo significa uma mudanca na provisao
de energia nos grandes polos de datacenters, logo o impacto ecolégico ainda existe e é
fortemente concentrada em pequenas areas. Uma reportagem do The Guardian apurou que,
em 2023, quando se retira as compensacoes por RECs, as emissoes de CO, por datacenters
da Meta aumentam em 3100 vezes, enquanto as da Apple aumentam em 402 vezes e as da
Microsoft em 21, ou seja, politicas compensatorias como RECs e créditos de carbono, apesar
de valiosas, sdo insuficientes para lidar com emissdes bastante localizadas (O’BRIEN, 2024).

Diante deste cenario de crescimento acelerado e incertezas em rela¢do ao impacto
ecologico presente e futuro das grandes implementagdes de IA/ML, este trabalho se propoe
a analisar formas de estimar o gasto energético das aplicacdes e diminuir suas emissoes
em duas principais frentes:
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Capitulo 1

Carbono Incorporado

Iniciaremos nossa analise pelo processo de produgao do hardware utilizado nas apli-
cacdes de ML, com um foco particular nos equipamentos estado-da-arte utilizados nos
maiores datacenters, chamados de hiperescaladores ou hyperscalers. Segundo um estudo
da McKinsey de 2024, até 2030, essas instalacdes concentrarao cerca de 85% das implemen-
tacoes de IA e ML, sendo aproximadamente 25% de modelos proprios e 60% de modelos de
terceiros a partir do fornecimento de ambientes em nuvem. (SRIVATHSAN et al., 2024)

Para isso, usa-se o conceito de carbono incorporado (embodied carbon), que corres-
ponde ao calculo de todo o gasto energético, na forma de emissdo de CO, e outros gases
provocadores de efeito-estufa, na producéo de certo objeto, desde a extracdo das matérias-
primas necessarias, manufatura, montagem e transporte da fabrica para os consumidores.
Calculos mais robustos incluem também os gastos no descarte do objeto apds o fim de
sua vida util (HAMMOND e JONEs, 2009).

O calculo para pecas de hardware tende a ser bastante complexo, devido a dificuldade
de acesso aos dados de todas as empresas envolvidas no processo de fabricacdo de uma
peca. Dessa forma, ao invés de desenvolver analises totalmente independentes, geralmente
se utiliza os dados produzidos pelos proprios fabricantes, como as avaliagdes de ciclo de
vida (ACV) feitas por empresas como Dell e Seagate, para seus produtos. Evidentemente,
isso torna o estudo do carbono incorporado suscetivel a subnotificagido. Para evitar esse
problema, a organizacgao ISO (International Organization for Standardization) criou a série
de padrdes 14040, definindo metodologias para o ACV. No entanto, ainda ndo ha um padrao
especifico para hardware. A Figura 1.1 ilustra a gama diversa de informacdes utilizadas
para estimar o carbono incorporado, por meio do modelo ACT, que sera explorado na
secao seguinte.

1.1 Modelos de Calculo e Estimativa

Dadas as limitacdes do método ACV, novos métodos foram desenvolvidos na academia
e industria para obter informac¢des mais corretas sobre o carbono incorporado no hardware
computacional.
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Figura 1.1: Diagrama de dados que compdem o modelo ACT (GupTA et al., 2022)

O primeiro método que analisaremos é o ACT (Gupta et al, 2022), publicado em 2022
a partir de uma parceria de pesquisadores da Universidade de Harvard e da Meta. Com o
intuito de promover a projecdo e desenvolvimento de hardware menos poluente, o modelo
busca utilizar dados mais especializados do que aqueles divulgados pelo produtor final,
como dados publicados pela Taiwan Semiconductor (TSMC) — uma das maiores produtoras
de semicondutores do mundo, que tem empresas como Apple, Nvidia, Qualcomm e Sony

como clientes.

As emissoes sdo divididas em trés tipos:

 emissdes de energia, relacionadas a geracdo da energia elétrica consumida nos
processos produtivos (portanto, dependentes da intensidade de carbono das fontes).

« emissdes de gases, relacionadas a gases resultantes da queima de produtos quimicos
(exceto combustiveis, que se encaixariam na categoria anterior).

« emissOes de matéria-prima, originadas na extracio e transporte destas.

Para unidades de processamento como CPUs, GPUs e FPGAs, compostas dos mes-
mos semicondutores organizados de forma diferente, considera-se que as emissoes E sdo
proporcionais a area de processamento da peca:

E

Onde:

1
v * area x (IC « EPA+ GPA+ MPA)

Y — aeficiéncia (yield) da fabrica (um numero entre 0 e 1 representativo da propor¢ao

de semicondutores que néo sao descartados durante a producéo)

IC — intensidade de carbono da fonte de energia

EPA — energia por area do semicondutor
« GPA — emissoes de gases por area

« MPA — emissdes de matéria-prima por area
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1.1 | MODELOS DE CALCULO E ESTIMATIVA

Ja para unidades de armazenamento (HDDs, SSDs e memoria RAM), as emissdes E sdo
proporcionais a capacidade de armazenamento, em bytes, por meio da medida carbono
por byte (CPB):

E = CPB * capacidade em bytes

Com essas defini¢des, além de estimar o carbono incorporado em um computador
ou datacenter, é possivel fazer previsdes sobre o impacto da substituicio de um certo
componente, ou de mudancas no proprio processo produtivo. Por exemplo, os autores
estimam que, comparada as fabricas da TSMC, bastante dependentes de combustiveis
fosseis, uma fabrica de semicondutores utilizando energia 100% renovavel teria uma
reducdo de aproximadamente 66% nas emissdes de energia por area de chip ao produzir
pastilhas de 3nm (o0 menor tamanho comercializado hoje), e de aproximadamente 60%
para pastilhas de 10nm, ainda utilizadas em processadores Intel Raptor Lake (Figura 1.2).
Ou ainda, pastilhas de 3nm e 5nm gastam quase a mesma quantidade de energia por cm?
produzido, porém gastam 28% a mais que pastilhas de 7nm feitas com a mesma tecnologia
(litografia ultravioleta extrema).
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Figura 1.2: Emissdo de CO; por tecnologia de semicondutor, considerando variagdes no fornecimento
de energia renovavel (GUPTA et al., 2022)

O modelo Spatial-Temporal Embodied Carbon (STEC) (ZHANG et al, 2024) estende
ACT ao considerar o tempo e espago onde certo componente foi produzido, ja que a
disponibilidade de energia de fontes diferentes é fortemente relacionada ao local geografico,
assim como certas fontes de energia renovavel, como solar e edlica, também variam suas
efetividades conforme as estacdes do ano.

Sendo assim, o modelo STEC propde analises em trés niveis de granularidade:

« ano de fabricacdo e zona do planeta, baseado em grupos de paises que compartilham
um mesmo tratado energético (STEC-ZY)

« estagdo do ano e pais de fabricagao (STEC-CS)
« dia do ano e pais de fabricacao (STEC-CD)
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Essa divisdo da enfoque as emissdes de energia, pois, segundo os autores, as outras
duas formas de emissdo sdo menos suscetiveis a variacdo de espago e tempo.

A maior granularidade em relacdo ao ACT gera medi¢des de carbono incorporado
bastante distintas. Analisando o processo produtivo de 6 dos maiores fabricantes de se-
micondutores, com produgdo em Taiwan, EUA, Italia, Irlanda, China e Coreia do Sul, a
divergéncia média entre STEC-CD e o ACT para o ano de 2021 foi de 10,88%, e a maxima
de 40,54%. Para os modelos menos granulares, a variagdo média aumenta, chegando a
18,01% entre STEC-ZY e ACT. A figura 1.3 ilustra essa divergéncia mostrando emissoes na
producio de CPUs em fabricas italianas e irlandesas. Ambos os locais possuem fontes de
energia limpa, mas com disponibilidade variavel ao longo do ano: na Italia, a energia solar
¢ mais forte durante o verdo, enquanto na Irlanda, ha potencial de energia edlica, mais
forte nos invernos. Mesmo com essa variagao, a média resultante do carbono incorporado
nas duas localidades é menor do que a média encontrada por ACT — aqui representado
por STEC-GY (global-year — ano de fabricagao e global).
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Figura 1.3: Variagdo no carbono incorporado na producio de CPUs em fabricas na Irlanda (IE) e Italia
(IT) durante o ano (ZHANG et al., 2024)

Além de maior precisdo na analise do presente, STEC pode auxiliar no planejamento
desses fabricantes na distribuicido de sua producio e instalacdo de novas fabricas. Por
exemplo, a ja citada abundancia de energia edlica no inverno irlandés faz com que fabricas
la instaladas, como o campus fabril da Intel Leixlip, tenha menos emissdes energéticas que
fabricas em Taiwan, onde, em grande parte, se utiliza o carvao como fonte de energia.

Segundo Li et al., a maior parte do carbono incorporado nos grandes datacenters
costuma ser o das GPUs. (B. L1, Basu Roy et al., 2023) Os servidores destinados a operacoes
de ML um nimero maior de GPUs comparada as CPUs, em propor¢des 2:1 como no NVIDIA
GB200 NVL72, base do datacenter Fairwater da Microsoft, ou 4:1 como no JUPITER Booster,
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datacenter considerado o quarto mais eficiente do mundo em termos de operagdes de ponto
flutuante por segundo (FLOPS), na lista TOP500 de Junho de 2025. (TOP500, 2025)

A preferéncia por esses componentes se justifica pelas suas maiores eficiéncias nos
calculos matematicos simples, como multiplica¢des de matrizes e de tensores, essenciais
nos processos de ML, quando comparados as tradicionais CPUs. Quando comparamos
uma GPU e uma CPU estados-da-arte, como, respectivamente, a AMD MI250X e a AMD
EPYC 7763, a primeira apresenta aproximadamente duas vezes mais carbono incorporado
que a segunda (B. L1, BAsu Roy et al., 2023). Porém, ao dividirmos essas quantidades pelo
numero maximo de operagdes de ponto flutuante (FLOP) por segundo — uma maneira de
avaliar o equilibrio entre performance e emissdes no processo produtivo — a GPU passa
a ser nove vezes mais eficiente nesse aspecto.

No entanto, os autores destacam que componentes de armazenamento de dados, como
HDDs e SSDs, também representam uma parte significativa dessas emissdes. Por exem-
plo, 36% do carbono incorporado ao Frontier, nimero 2 da TOP500, esta nas suas GPUs,
enquanto 30% esta nos HDDs e 12% nos SSDs. Pelo estudo de Zhang et al., as emissoes
de ambos os componentes sdo similares em termos brutos, sendo que HDDs sdo vantajo-
sos em relacdo a capacidade de armazenamento e os SSDs vantajosos na velocidade na
transferéncia (leitura e escrita) de dados. (ZHANG et al., 2024)

1.2 Formas de Reducao

Além de apresentar o método ACT, Gupta et al. também explana algumas formas de
reduzir a emissao do carbono incorporado, com foco em sistemas moveis, mas que sdo
aplicaveis para casos gerais. (GUPTA et al., 2022)

Primeiramente, os autores propdem um método de desenvolvimento de hardware
especializado onde se fixam as métricas de desempenho e busca-se, como num problema de
otimizacdo, minimizar a emissdo de carbono incorporado. Usando como base a arquitetura
de hardware aberto NVDLA, desenvolvido pela NVIDIA, fixado o problema de processar
30 imagens de mesma resolucdo por segundo, os autores exploram os possiveis numeros
de unidades de computacido aritmética basica (unidades MAC) resolvem o problema, ao
mesmo tempo que otimizam métricas de carbono.

Nesse exemplo, como mostra a figura 1.4, 256 MACs sao suficientes para atingir o
processamento necessario, e é o valor 6timo, entre poténcias de dois, encontrado pelos
autores. 2048 MACs ¢é o valor que otimiza a performance, aproximadamente nove vezes a
mais que o objetivo de 30 imagens por segundo, mas a um custo de emissdo incorporada
3.3 vezes maior.

O conceito proposto de desenvolvimento de hardware com objetivos de performance
bastante especificos parece promissor, e é pouco abordado na literatura académica, porém
sua viabilidade no contexto atual pode ser limitada pois as industrias que circundam o
mercado de ML tém operado em uma logica de corrida tecnologica, tratando a perfor-
mance como o principal atrativo comercial. Dessa forma, essa mudanca de estratégia
por parte dos fabricantes de hardware pode ser bastante custosa, e caso nédo seja adotada
pelos consumidores desses produtos — empresas que implementam modelos de ML e os
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Figura 1.4: Relagdo entre carbono incorporado e performance das unidades MAC. Os pontos destacados
sdo quantidades de MACs em poténcias de dois, de 32 a 2048 (GUPTA et al., 2022)

incorporam em seu software —, a tendéncia é que os componentes sejam substituidos com
maior frequéncia, anulando os beneficios dessa forma de reducio.

Os autores também propdem duas formas de reutilizacdo de hardware: balancear o
uso de CPUs e hardware especializado, como GPUs, FPGAs e DSPs, e estender a vida
util dos componentes.

Ja foi descrito que GPUs carregam mais carbono incorporado nos seus processos
produtivos que as CPUs, e que se entende, do ponto de vista do consumidor, que tanto
essas emissdes quanto as operacionais sio compensadas pela maior performance nas tarefas
de ML. No entanto, essa interpretacio é bastante limitada: os beneficios dos hardware
especificos ndo sdo inerentes a sua existéncia, mas surgem da sua utilizacdo correta e bem-
projetada. Assim, sdo necessarios experimentos e calculos para definir quais componentes
usar, e como usa-los, de forma a evitar a subutilizacdo e minimizar as emissoes.

Por exemplo, supondo uma GPU e uma CPU com mesmas quantidades de carbono
incorporado, um servidor com 4 dessas GPUs utilizado em 50% possui 67% mais carbono
incorporado do que o necessario, ou seja, que um servidor com 2 GPUs utilizado em 100%,
sem considerar as emissdes operacionais das placas subutilizadas. O mesmo principio de
balanco pode ser aplicado a SSDs e HDDs: SSDs apresentam mais carbono incorporado que
HDDs de mesma capacidade, mas possuem menor carbono operacional e maior velocidade
nas operacOes de leitura e escrita. A figura 1.5 demonstra a diferenca nas emissdes dessas
pecas, supondo uma poténcia média de 4.2 W para um HDD e 1.3 W para um SSD.

Ademais, Wadenstein e Vanderbauwhede explicam que substituir um SSD de 500 GB
por outro de 10TB incorre em um aumento de 842 kgCO,, 70% do total do servidor utilizado
de exemplo. Nesse contexto, é necessario que a utilizacdo do novo armazenamento seja
maior que 8,5% para que a substituicdo seja compensatoria ecologicamente. (WADENSTEIN
e VANDERBAUWHEDE, 2025)
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Energy OPEX CAPEX Total
(KWh) CO2e (Kg) || CO2e (Kg) || CO2e (Kg)
Exp. Life S5yr | 10yr || 5yr | 10yt || 5yr| 10yr || S5yr | 10yr

Storage

HDD (1TB) || 183.9{367.9(79.6 | 159 || 20 | 40 |/ 99.6| 199
SSD (1TB) || 56.9 |113.8|/24.6 | 49.2 || 160 | 320 || 184 |369.2

Figura 1.5: Carbono incorporado em HDDs e SSDs de 1TB (TANNU e NAIR, 2023)

Mais adiante, é necessario refletir sobre a extensdo da vida ttil dos componentes, de
forma a diminuir a demanda, e a consequente producio, de novas pecas. Os dispositivos
de armazenamento (HDDs e SSDs) sdo os mais criticos nesse aspecto, pois o limitante de
suas vidas uteis ndo é apenas a lentidao em relagéo ao inicio desse periodo ou as pecas de
tecnologia mais recente, mas também a corrupcio dos dados armazenados.

Uma maneira de estender a vida util de um SSD é aumentar o seu provisionamento
excessivo, isto é, capacidade de armazenamento que nao é utilizada diretamente pelo
usuario, mas pelo firmware do dispositivo para reduzir a quantidade de erros de leitura
e escrita. Supondo que ha manutencdo no espago util do SSD, aumentar seu provisiona-
mento excessivo é, evidentemente, aumentar o carbono incorporado. Por isso, busca-se
um equilibrio entre esses dois fatores. Gupta et al. encontram que o valor 6timo para uma
vida util de 2 anos é 16%, e 34% para 4 anos. (GUPTA et al., 2022)

Tannu e Nair propdem outras maneiras de extensio, como a implementacdo de al-
goritmos mais potentes de correcdo de erros, protegendo o sistema contra corrupcéo de
dados, ao custo de maior laténcia — e, portanto, gasto energético — na leitura e escrita; o
uso conjunto de células de nivel tnico (SLC), excelentes na durabilidade e velocidade, e
de nivel multiplo (MLC), excelentes na capacidade de armazenamento e a transformacio
de dispositivos MLC em SLC para tarefas menos exigentes, quando erros se tornarem
frequentes. (TANNU e NAIR, 2023)
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Capitulo 2

Carbono Operacional

2.1 Modelos de Calculo e Estimativa

Recentemente, duas das grandes empresas do mercado de ML divulgaram o custo
médio da inferéncia de suas aplicacdes. Em junho de 2025, Sam Altman, CEO da OpenAl,
afirmou em um post de seu blog pessoal que o processamento médio de um prompt pelo
ChatGPT gasta 0,34 Wh (ALTmAN, 2025), enquanto a Google afirmou em um artigo que
o custo médio por prompt do Google Gemini é de 0,24 Wh, com emissdo de 0,02 gCO, e
(ELswORTH et al, 2025).

A publicagio de Altman ndo contém metodologia ou dados que embasem a estatistica
publicada, mas o artigo publicado pela Google detalha a metodologia de calculo, medindo
a energia gasta pelos “aceleradores de IA” (TPUs e GPUs, provavelmente), CPU e DRAM,
além da energia gasta pelos sistemas externos aos computadores, como os de resfria-
mento. Apesar disso, o artigo ndo apresenta as medidas capturadas ou as configuracdes
dos datacenters para a replicacéo e verificacido dos resultados. Ou seja, como ainda ha
muita limitacdo de dados e de acesso aos ambientes dessas grandes aplicagdes, é preciso
desenvolver formas de estimar o carbono operacional de forma independente.

Schwartz et al. argumentam que a melhor métrica para calcular as emissoes de CO, de
um modelo de ML é o nimero de operagdes em ponto flutuante (FLOPs) realizadas durante
o treinamento, ou durante uma inferéncia. (SCHWARTZ et al., 2020) A partir desse valor,
podemos, a partir das especificacdes de hardware, determinar a quantidade de energia
gasta, em watts-hora (Wh) e sabendo a intensidade de carbono das fontes de energia
utilizadas, determinar a quantidade de CO, emitido.

Os niveis de suporte para esse calculo nos frameworks de ML sdo variados. Além de
pacotes independentes desenvolvidos pela comunidade, como (Sovrasov, 2024) e (HE,
2022), o PyTorch (PaszkE et al, 2019), principal biblioteca de ML em Python, oferece a
opc¢ao “with_flops” em seu mddulo profiler, para calcular os FLOPs durante a execucio. No
entanto, as Unicas operacdes analisadas, até agora, sdo soma e multiplicacdo de matrizes, e
convolucdes bidimensionais, sem suporte para fun¢des de ativagao tal qual Softmax e ReLU,
ou para convolugdes tridimensionais, bastante usadas em analises de video, por exemplo.

13
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A biblioteca JAX (BRADBURY et al., 2018), também bastante popular, oferece estimativas
de custo pela fungéo “cost_analysis” antes da compilagido dos modelos.

Muitos autores também se dedicaram a calcular, de forma prévia, o numero de operacdes
de modelos de MLs. Para Transformers, por exemplo, usa-se a aproximacio de 6N operacdes
por token, sendo P o nimero de parametros do modelo. O fator escalar 6 vem do fato de uma
inferéncia (ou forward-pass) custar aproxidamente 2p, e uma atualizacdo de parametros
(backward-pass) custar o dobro de um forward-pass, logo 4p. Hoffmann et al. oferece um
calculo mais detalhado da inferéncia para esses modelos.

Para os embeddings, temos
FLOPembed =2x% Netx * NMyocab * dmodelo

onde n.y, expressa o tamanho da janela de contexto, ny.p 0 tamanho do vocabulario
—tokens passiveis de serem gerados pelo modelo — e dy,o4c1o @ dimensionalidade da repre-
sentacdo vetorial (o embedding) dos tokens.

As camadas de atencdo podem ser decompostas em cinco operagoes:

a projecédo da entrada nos espacos Q, K e V (query, key, value) tem custo

FLOPQKV = 2% 3 % Nt * dmodelo * dkey * Ncamadas

o produto QK tem custo

_ 2
FLOPprOdQK =2 * ng, * dkey * Ncamadas

o Softmax apods o produto QK tem custo

_ 2
FLOPsoftQK =3 Nty * Ncamadas

a reducio (multiplicacdo pela matriz V) custa

2
FLOPyroqv = 2 * Ny * diey * Neamadas

por fim, a projecao de volta as dimensdes do modelo custa

FLOPproj = 2 % Netx * Amodelo * dkey * Ncamadas

onde 7camadas Tepresenta o numero de camadas de atencio (ou attention heads) e diey é
a dimensdo da matriz-chave (key ou K).

Depois, a camada de rede neural tem suas operagées expressas por
FLOPneural =2%2% Nctx * Amodelo * @neural

sendo dpeyra; @ dimensdo da saida da rede neural. O dltimo passo é realizar um outro
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Softmax de custo

FLOPsoftmaX =2x% Netx * Myocab * dmodelo

Comparando essas formulas com a estimativa 6p, Hoffmann et al. encontra que, para
modelos reais, a diferenca ¢ pequena, como mostra a figura 2.1.

Parameters num layers d model ffw size num_heads k/qsize ‘ FLOP Ratio (Ours/6ND)

73M 10 640 2560 10 64 1.03
305M 20 1024 4096 16 64 1.10
552M 24 1280 5120 10 128 1.08
1.1B 26 1792 7168 14 128 1.04
1.6B 28 2048 8192 16 128 1.03
6.8B 40 3584 14336 28 128 0.99

Figura 2.1: Comparagao entre o método de Hoffmann et al. para calculo de FLOPs em Transformers e
a aproximacdo 6P (HOFFMANN et al., 2022)

Apesar de facilitar a comparacdo entre modelos, a métrica de FLOPs é bastante vulne-
ravel as variacOes nas implementacdes dos modelos, principalmente na questao do uso
de memoria, o maior fator para a subutilizacdo das GPUs, como ilustrado por Ivanov et
al., afirmando que para uma implementacdo padrao do modelo BERT no Pytorch, 25,5%
do tempo de execucdo é gasto em operacdes de normalizagdo de resultados, apesar de
essas operagdes representarem apenas 0,17% dos FLOPs, o que demonstra o alto custo da
transmissdo de dados entre as unidades computacionais. (IvaNov et al.,, 2021)

O problema da subutilizagdo dessas unidades motivou a Google a desenvolver a métrica
de eficiéncia de modelos de linguagem MFU (model FLOPs utilization — utilizacdo de FLOPs
pelo modelo), definida pela razdo %, onde F é a quantidade de FLOPs por token gerado, T
€ o numero de tokens gerados por segundo e M o valor maximo de FLOPs por segundo
realizados pelo computador. A métrica foi divulgada pela primeira vez em 2022 junto com
o modelo PaLM (CHOWDHERY et al., 2023), que atingia cerca de 46% de MFU. Segundo
Casson, as implementag¢des mais populares de modelos baseados em Transformers até
2023 tinham MFU entre 10% e 65%. (CAssoON, 2023)

Faiz et al. desenvolveram o modelo LLMCarbon, que estima a emissao de CO, a partir
da contagem de FLOPs e do célculo do carbono incorporado. Exemplificaremos o funciona-
mento do modelo supondo o treinamento de um LLM baseado no modelo Transformer:

Primeiro, determina-se o nimero de FLOPs executados durante o treinamento. Como
foi visto anteriormente, em Transformers esse valor é proximo de 6P T, onde P é o nimero
de parametros do modelo e T o nimero de tokens presentes no conjunto de dados de
treinamento.

Depois, € necessario obter o MFU do modelo. Caso nao seja possivel obté-lo empirica-
mente, uma op¢ao viavel é estima-lo a partir do numero de pecas de hardware especializado
(GPUs, TPUs, FPGAs e semelhante), utilizando uma férmula inspirada pelo trabalho de
Narayanan et al. Essa formula supde que existe um nimero N de pecas que obtém eficiéncia
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Otima por meio de técnicas de paralelismo de dados (pecas diferentes recebem entradas
diferentes, e os parametros aprendidos pelos modelos sdo agregados periodicamente),
de tensores (cada camada é particionada entre as pecas) e pipeline (cada pega trata uma
camada diferente).

Essas N pecas atingem MFU mfu,, e estimamos o MFU de M pecas mfu,, por:

* mfuy, se M < N
* mfuy + ¥z, se M > N

Yo *
Y1 *

NERAN

onde Yo, y1, y2 sdo constantes a serem obtidas empiricamente. Com mfu,,, o tempo t de
execuc¢do do treinamento nas N pecas pode ser calculado como

. total de FLOP:s realizados
M * mfu,, + MAXFLOPS

onde MAXFLOPS representa o maximo de FLOPs por segundo que a peca consegue realizar.

O gasto de energia de um conjunto de M pecas de hardware especializado iguais é,
portanto, expressa por

energia = W x mfu,, * t x M « PUE

onde W representa a poténcia maxima da peca, em watts, e PUE ¢é a eficiéncia de uso
energético da infraestrutura do servidor. Para obter a quantidade de carbono emitido,
basta multiplicar a quantidade de energia gasta pela intensidade de carbono da matriz
energética que alimenta o servidor.

2.2 Formas de Reducao

2.2.1 Reducao do Numero de Operacoes

Como vimos na secao anterior, a emissdo de carbono operacional tem forte relacao
com o tempo de execuc¢do das operacdes de inferéncia e treinamento dos modelos. Sendo
assim, otimizacdes que permitem reduzir o tempo de execucido tendem a reduzir também
o gasto energético e as consequentes emissdes de CO,.

Wang et al. propdem trés técnicas, ilustradas no diagrama da figura 2.2 para a reducdo
do nimero de operacdes, durante o treinamento e inferéncia de modelos, com um foco em
redes neurais convolucionais (convolutional neural networks — CNNs), modelos utilizados
principalmente em problemas de visdo computacional (WANG et al., 2019).

A primeira dessas técnicas (stochastic mini-batch dropping — SMD) consiste em definir
uma probabilidade (a principio, 50%) para que, durante uma iteracido do treinamento,
um pequeno conjunto de exemplos seja ignorada. Dessa forma, o nimero de operacdes
¢ reduzido em aproximadamente 50%, porém, segundo os experimentos dos autores, o
impacto nas métricas de corretude do modelo sdo pequenas, e pode até ser positivo, pois
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Figura 2.2: Diagrama dos métodos de Wang et al. para otimizagdo de CNNs (WANG et al., 2019)

pular exemplos introduz certa variabilidade durante o treinamento que pode ser util para
evitar pontos de sela e minimos locais insatisfatorios na func¢ao a ser minimizada.

Treinando o modelo ResNet-74 na base de dados CIFAR-10, que contém 60000 imagens
coloridas de baixa resolucdes a serem classificadas em 10 categorias, utilizando entre 64
e 128 mil iteragdes, a figura 2.3 mostra que empregar SMD resulta consistentemente em
maior acuracia que utilizar todas as amostras em todas as itera¢des, com uma diferenca
maxima de 0.86% em 75 mil iteragdes, e minima de 0.39% em 128 mil iteracoes.

Test Accuracy

94.0 1

93.6 1

93.2 -

92.8 1

92.4

Proposed SMD
SMB

05 0.6 07 0.8 0.9 1.0

Energy Ratio
(a)

Figura 2.3: Resultados do SMD em comparagao d estratégia padrdo de mini-batches (SMB — standard
mini-batch) (WANG et al., 2019)

A segunda técnica proposta, aplicada tanto no treinamento quanto na inferéncia, é
chamada de atualizagio seletiva de camadas baseado na entrada (input-dependent selective
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layer update — SLU). Os principais modelos baseados em CNNs, como as ResNets, frequen-
temente apresentam dezenas de camadas, provocando o desenvolvimento de métodos para
determinar quais camadas sdo essenciais para garantir a corretude da classificagdo de uma
entrada e quais camadas sao pouco importantes ou podem ser ignoradas, em um mecanismo
parecido a combinacao de especialistas (mixture of experts — MoE) nos Transformers.

Em particular, o SLU introduz pequenas redes neurais recorrentes antes de cada camada,
que recebem a saida da camada anterior e retornam um valor entre 0 e 1 que corresponde
a probabilidade da camada ser utilizada para aquele exemplo. Essas redes neurais podem
ter seus parametros treinados junto do restante do modelo, porém a um custo baixo devido
a serem redes pequenas.

Como na figura 2.4, esse método rende resultados melhores que o método de pro-
fundidade estocastica proposto por Huang et al., que ignora camadas aleatoriamente
com probabilidades que aumentam linearmente conforme a profundidade, priorizando as
primeiras camadas, que tendem a identificar as caracteristicas mais cruciais da entrada.
Ajustando os parametros da profundidade estocastica para que o nimero de camadas
utilizadas seja proximo do SLU a cada passo, logo com nimero de operagdes similares,
SLU obtém acuracia consideravelmente melhor.

94.01 ., sp
> 93.51 e Proposed SLU
(%]

® Proposed SLU+SMD

£ 93.0- P o
v ®
& 92.5- O ®
o [ ] .
$ 92.0 N I
|—

91.5 "‘-36

91-0 1 I T T T
0.2 0.3 0.4 0.5 0.6

Energy Ratio

Figura 2.4: Comparagao entre SLU e profundidade estocastica (SD —stochastic depth) (WANG et al.,
2019)

A acuracia é comparavel até quando SLU utiliza menos camadas: uma implementacdo
de SLU utilizando 30% das camadas tem acuracia 0.86% maior que uma implementacio de
profundidade estocastica com probabilidade inicial de 50%, ou seja, realizando, em média,
20% mais operagdes e consumindo mais energia.

A terceira técnica é o gradiente descendente de sinal preditivo (predictive sign gradient
descent — PSG). Essa técnica estende métodos anteriores, que, durante a retropropagacio,
usam apenas o sinal dos gradientes para atualizar os parametros, para reduzir o custo
computacional das atualizacdes. No entanto, esses métodos ainda calculam os gradientes
com precisao maxima.
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Por sua vez, PSG considera apenas os bits mais significativos para o gradiente da funcao
de erro da saida do modelo e para a entrada (os autores sugerem 10 e 4 bits, respectivamente)
para aproximar ou "prever"o sinal do gradiente do parametro a ser otimizado. Os autores
explicam que a probabilidade de erro tem relacao exponencial com o nimero de bits dos
gradientes, porém também determinam um hiperparametro 7 com o seguinte propdsito:
se ao calcular o gradiente G de um parametro p utilizando o método PSG, encontramos
que |G£5G| < 1, entdo calculamos G, com precisdo maxima, para minimizar a chance de
erro ao determinar o sinal de G,.

Comparando o método PSG ao método de adotar parametros de 8 bits porém gradientes
de 32 bits, PSG economizou 60% de energia nos experimentos do artigo, com uma perda
absoluta de apenas 0.65% na acuracia (de 93.24% de classificacdes corretas a 92.59%).
Comparado ao método de utilizar parametros e gradientes de 32 bits, atualizando-os
apenas com os sinais, os resultados de eficiéncia sdo parecidos, mas com um pequeno
aumento na acuracia.

A escolha de hiperparametros pode também ter grande impacto no consumo energético.
Puvis de Chavannes et al. analisaram a relacdo entre varios hiperparametros — listados na
figura 2.5 — de modelos Transformer, o consumo energético e a perplexidade, métrica de
incerteza na geracdo de uma sequéncia de tokens (Puvis DE CHAVANNES et al., 2021).

Parameter Interval
vocab_size [1,30522]
hidden_size multiplier [1,100]
num_hidden layers [1,12]
num_attention heads [1,18]
intermediate size [1,3072]

hidden act (relu, silu, gelu, gelu new)
hidden dropout prob [0.1,1]
attention_probs_dropout prog [0.1,1]
max_position_embeddings [512,512]

type vocab size [1,1]
initializer range [0.02,0.02]

layer norm_eps [1.00E-12,1.00E-12]
position_embedding type (absolute, relative key,

relative_key query)

Figura 2.5: Lista de hiperparametros explorados por Puvis de Chavannes et al. (Puvis DE CHAVANNES
et al., 2021)

Buscando minimizar o produto entre a perplexidade e o gasto energético (PEP -
perplexity-energy product), em kWh, para o modelo RoOBERTa, um aprimoramento de-
senvolvido pelo Facebook ao modelo BERT, os autores realizaram uma busca bayesiana
pela combinagéo de hiperparametros como o nimero de camadas de atencido (attention
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heads), fungdes de ativacio e tamanho do vocabulario, usando a ferramenta HyperOpt.

O estudo encontrou que, para as melhores configuracdes em termos de PEP, a correlagao
entre a perplexidade e o custo de energia é alta e negativa (-0.88), porém, considerando
todas as 154 configuragdes, a correlacdo é de 0.5, ou seja, em muitos casos, é possivel
reduzir ambas as métricas. As demais correlacdes podem ser observadas na figura 2.6.
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Figura 2.6: Correlacoes entre hiperparametros e métricas encontradas por Puvis de Chavannes et al.
para os 15% melhores modelos em PEP (Puvis DE CHAVANNES et al., 2021)

O hiperparametro de maior impacto é o numero de camadas das redes neurais que
compdem a parte final dos Transformers, com correlagdo de 0,71 e -0,64 em relacdo a
energia e perplexidade, respectivamente, para os melhores modelos. A média de camadas
é de 1,91, com desvio padrao de 0,92. Esse valor é baixo comparado as 12 camadas padréo
do modelo RoBERTa, incorrendo em um custo de maior perplexidade que, segundo os
autores, poderia ser compensado com o uso de mais dados de treinamento, pois RoOBERTa
foi treinado com aproximadamente 10 vezes mais exemplos.

A escolha da funcéo de ativacdo é a segunda de maior impacto, com correlagao de 0,66
para o consumo energético e 0,71 para a perplexidade, nos melhores modelos. Nesse cenario,
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a funcdo GELU é a mais frequente, superando SiLU e a tradicional RELu, porém ela aparece
também em algumas das piores configuracdes, sendo a fungéo de maior custo energético.

Curiosamente, o numero de camadas de atencao tem correlacdo mais baixa quando
comparado ao nimero de camadas das redes neurais, sendo -0,22 para a energia e 0,36
para a perplexidade entre as melhores configuracdes. No caso geral, a correlacao com
a perplexidade é quase nula: 0,057.

Os autores destacam que a probabilidade de dropout, ou seja, a probabilidade de anular
um certo parametro do modelo durante o treinamento, para evitar o sobreajuste, é um
dos unicos hiperparametros que tem impacto na perplexidade mas quase nenhum no
consumo energético, portanto pode ser otimizado buscando apenas a maior chance de
acerto. Nos modelos de maior PEP, a probabilidade de dropout média foi de 0,18, com
desvio padrédo de 0,06 (figura 2.7).

Best 15% Mean Best 15% Std. Dev Worst 15% Mean Worst 15% Std. Dev

vocab_size 21187.73 6426.71 18545.04 9141.88
actual_hidden_size 116.43 84.20 727.78 27.33
num_hidden layers 1.52 0.77 7.82 3.26
num_attention_heads 8.08 5.27 12.78 4.48
intermediate_size 890.47 554.19 1149.65 739.19
hidden_dropout_prob 0.37 0.23 0.40 0.15
attention probs_dropout prog 0.28 0.14 0.47 0.28
energy comsumption 0.99 0.17 6.18 1.93
perplexity 338.51 576.74 1236.04 962.74

Figura 2.7: Médias e desvios padroes encontrados por Puvis de Chavannes et al. para os hiperparametros
nos 15% melhores modelos em PEP (Puvis DE CHAVANNES et al., 2021)

2.2.2 Otimizacao do Uso do Hardware

Outra importante forma de reduzir o carbono operacional é desenvolver maneiras
para utilizar o hardware mais eficientemente. As GPUs tém sido o foco dos estudos dessa
vertente pois as suas arquiteturas e funcionamento sdo essenciais para a viabilidade da
implementacgio de grandes modelos de ML, porém necessitam de estratégias especificas
para maximizar seus desempenhos.

Como vimos anteriormente, o principal fator a ser otimizado nas GPUs é a adminis-
tracdo da memoria, pois a busca de dados na memoria global ou compartilhada da GPU é
uma operagao custosa que frequentemente causa interrup¢des nos programas.

Li et al. busca essa otimizacdo especificamente para redes neurais convolucionais em
dois aspectos: escolher a ordem das dimensdes dos tensores que mais acelera o acesso
aos dados pelas threads da GPU e reduzir chamadas de comando de leitura de memoria
externa a GPU (C. L1 et al, 2016).

Os tensores convolucionais geralmente possuem quatro dimensdes:

« o numero N de imagens processadas por iteracido
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« o numero C de mapas de atributos (feature maps)
+ o comprimento W e altura H das imagens

Assim, existem 16 formas de representar esses tensores em memoria, sendo que o
artigo analisa duas delas: a CHWN, utilizada pela biblioteca cuda-convnet com o algoritmo
tradicional de convolucdo, e o NCHW, aplicado pelo Caffe e cuDNN, que possuem imple-
mentacdes de convolucdo por meio da multiplicacdo de matrizes ou pela transformada
rapida de Fourier (fast Fourier transform — FFT). As demais formas foram descartadas ou
por terem resultados piores, como é o caso de HWCN e NHWC, ou por dificultarem a
aplicacdo das convolugdes, como as transposi¢des que separam as duas dimensdes das
imagens (CHNW, por exemplo).

Para os testes, os autores apresentam uma adaptacdo da biblioteca Caffe com imple-
mentagdes proprias da mudanca de disposicio de CHWN e NCHW, e vice-versa, e da
convolucao tradicional, testando-a para diferentes CNNs conhecidas, como a AlexNet e a
ZFNet, medindo o desempenho em algumas camadas dessas redes, cujas configuracdes
estao listadas na figura 2.8.

No que tange as convolugdes, a disposicado CHWN, com a convolucéo tradicional, tem
desempenho melhor quando C é pequeno, como na primeira camada de convolucio de
cada rede, onde C corresponde ao nimero de canais da imagem (3 para imagens coloridas
RGB, 1 para imagens em escala de cinza). Aumentar o nimero de imagens processadas
também tende a favorecer essa configuracdo. Em média, a disposi¢ao e algoritmos ideais
para cada camada sdo 2,48 vezes mais eficientes que a outra opgéo, 2,08 vezes quando
consideramos o custo das transposicdes. Para a primeira camada da LeNet (CV1 na figura
2.9), processando 128 imagens 28x28 em escala de cinza com 16 mapas de atributos, CHWN
¢é mais de 6 vezes mais rapido que NCHW (4 vezes considerando a transposi¢io).

Apos a aplicagao das convolugdes, CNNs tipicamente possuem camadas de agregacio
ou pooling, que reduzem a dimensionalidade das caracteristicas calculadas nas camadas
anteriores por meio de operacdes de complexidade linear como médias ou selecao do
maior valor. Por isso, essas camadas, assim como a camada final de classificacdo, tém custo
computacional menor que as convolucionais, aumentando o impacto das operagdes de
leitura e escrita na memoria.

Para essas camadas, CHWN se mostrou muito mais eficiente em todos os exemplos, pois
nessa disposic¢ao, as threads da GPU acessam, a cada leitura da memoria global, enderecos
consecutivos de memoria, cada uma representando uma imagem processada. Quando
threads diferentes acessam enderecos adjacentes de memoria, dizemos que o acesso é
coalescente. Ja para a disposi¢cado NCHW, os acessos nio sao consecutivos, visto que as
threads aqui representam os mapas de atributos mas a dimensdo continua da memoria
é a coluna do mapa. Logo, o niimero de bytes lidos por operacéao é fixo, mais operacdes
de leitura sdo necessarias em uma iteracao.
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Layer Ni | Co |H/W |Fw/Fn| Ci S | Description
CONVI (CVI) | 128 | 16 | 28 5 1 1
CONV2(CV2) | 128 [ 16| 14 | 5 | 16 | 1 | LeNell7k
POOLI(PLL) | 128 | - | 28 | 2 | 16 | 2 xﬁdﬂféﬁf
POOL2 (PL2) 128 - 14 2 16 2 o
- - (epoch 200)
CLASSI 128 images and 10 categories
CONV3(CV3) | 128 | 64 | 24 5 3 1
CONV4(CV4) | 128 | 64| 12 5 64 1 Cifar10[15]:
POOL3 (PL3) 128 | - 24 3 64 2 Model Error
POOL4 (PL4) 128 | - 12 3 64 2 rate:14.04%
CLASS2 128 images and 10 categories (epoch 100)
POOLS5 (PL5) 128 - 55 3 96 2 ImageNet
POOLG6 (PL6) 128 - | 27 3 192 2 With
POOLT (PL7) 128 - 13 3 256 2 | AlexNet[12]
CLASS3 128 images and 1000 categories Model
CONVS5 (CV5) 64 | 96 | 224 3 3 2
CONV6 (CV6) 64 |256| 55 5 96 2
CONV7 (CVT) 64 |384] 13 3 256 1 ,
CONVS (CV8) | 64 |384] 13 | 3 | 384 | 1 I‘““g;g‘ft‘ M th
POOLS (PL8) 64 - 110 3 96 2 MudclEZS]
POOL9 (PL9) 64 | - 26 3 256 2
POOLI10 (PL10) | 64 - 13 3 256 2
CLASS4 64 images and 1000 categories
CONV9 (CV9) 32 | 64 | 224 3 3 1
CONVIO0 (CVI0)[ 32 |256| 56 3 128 1 |ImageNet with
CONVI1(CVID)| 32 |512] 28 3 256 1 VGG Model
CONVI2 (CVI2)| 32 |512] 14 3 512 1 [22]
CLASSS 32 images and 1000 categories

Legenda:
Ni: nimero de imagens ou batch size
« Co: numero de kernels de convolucao
« H/W: altura e comprimento, respectivamente
« Fw/Fh: comprimento e altura dos kernels
« Ci: canais de entrada
« S: stride, ou o tamanho do passo entre operacdes de pooling consecutivas em uma
mesma entrada

Figura 2.8: Configuragdes de camadas convolucionais (CV) e de pooling (PL) explorados por Li et al.
(C. L1 et al., 2016)

Na camada de classificagio, ha uma outra otimizacao especifica que pode ser empregada:
a fusdo de kernels em CUDA. Nas trés bibliotecas exploradas, cada passo do algoritmo
de classificacdo Softmax (programa 2.1) é implementado em um kernel diferente, ou seja,
a cada passo, os resultados sdo transferidos para a memoria externa a GPU para serem
lidos no inicio do préximo passo, junto com as instrucdes do novo kernel. Assim, se fosse
possivel executar o algoritmo em um unico kernel, menos transacoes de memoria externa
seriam necessarias, otimizando o processo.
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Programa 2.1 Softmax (sequencial)

1 FUNCcAO softmax(v)
2 max < v[0]
3 r < vetor nulo de mesmo tamanho de v
4 para todo elem em v
5 se elem > m
6 max < elem
7 fim
8 fim
9 soma <0
10 para todo i em 0..tamanho(v)
11 x «— exp(V[i] - max)
12 Hi] «x
13 soma += x
14 fim
15
16 para todo elemem r
17 elem /= soma
18 fim
19 devolva r

No artigo, apresenta-se um kernel onde cada bloco de threads representa uma imagem
processada, e cada thread do bloco representa um pequeno conjunto de categorias. Nesse
contexto, as threads podem operar em paralelo, consultando a memoria compatilhada
da GPU apenas para ler e escrever max e soma (linhas 10-14 e 16—-18 do programa 2.1).
Essa otimizagdo surte grande efeito quando o niimero de categorias é alto. Para uma
configuracdo de 128 imagens sendo classificadas em 10 mil categorias, o novo kernel
atingiu 94% da largura de banda da GPU utilizada, sendo 3,58 vezes mais rapido que a
implementacdo do cuDNN, a melhor entre as bibliotecas analisadas.

.
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Figura 2.9: Otimizacdo ao usar a transposigdo e algoritmo ideias para cada camada convolucional
em Li et al., considerando algoritmos simples (naive) ou mais elaborado (optimized) de transposicdo
(C. L1 et al., 2016)
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A fusédo de kernels é também um dos métodos apresentados em Ivanov et al., que busca
aprimorar o uso da memoria por modelos Transformers (IvaNov et al., 2021). Aplicando-
a para operacdes simples como funcdes de ativacio, aplicacao de viéses e dropouts, foi
possivel acelerar algumas operacdes em até 90%, como é o caso da sequéncia adi¢do do
viés—ReLU-dropout na primeira camada neural do modelo BERT. Para a segunda camada,
0 mesmo processo, incluindo a normalizagio dos resultados, é 70% mais rapida com a fusdo
de kernels. A estratégia também é empregada para a atualizacdo destes mesmos parametros
durante o algoritmo de retropropagacdo, com otimizacoes de 64% e 58% respectivamente.

Apods a fusdo, os autores propdem a otimizacdo das disposicdes dos tensores
representando-as por um grafo direcionado, onde cada vértice representa uma configuracéo
possivel para determinada operagao, com arcos conectando operacdes subsequentes e
cujos pesos sdo o tempo de execucdo da operacdo e transposicao posterior (se necessaria),
obtidos empiricamente. Executando um algoritmo de caminho mais curto, é possivel
encontrar a configuracdo 6tima. A configuracdo 6tima encontrada é 30% mais rapida no
treinamento da camada de encoding do modelo BERT quando comparado ao Pytorch,
com uma reducio de 23% na movimentacdo de dados entre as memorias, e 20% quando
comparado a uma implementacgao com TensorFlow com otimizac¢des do compilador XLA.

Li et al. apresenta uma outra estratégia de otimizacdo, denominada Clover: o parti-
cionamento de GPUs entre modelos de tamanhos variaveis. (B. L1, SAmsI et al., 2023) A
partir da geracdo Ampere com a tecnologia MIG (multi-instance GPU — GPU de multiplas
instancias), as GPUs NVIDIA podem ser divididas em até sete particdes independentes,
em cinco tamanhos: 1, 2, 3, 4, 7, tais que a soma dos tamanhos deve ser sempre sete. Ou
seja, é possivel dividir a placa em cinco particoes de tamanho 1 e uma de 2, ou dividi-la em
duas particdes de tamanho 3 e uma de tamanho 1. As 19 possibilidades de particionamento
podem ser encontradas na figura 2.10.

7gslice 4gslice 3gslice 2gslice 1gslice
| ] | ] [ | ] | |

6 7 8 91011121314 1516 17 18 19

Slice Types:

Figura 2.10: Formas de particionamento disponiveis com a tecnologia MIG em placas NVIDIA (B. L1,
Samsr et al., 2023)

Quando consideramos um modelo de um mesmo tamanho, adequado para particdes
pequenas, usar parti¢oes menores ja pode incorrer em menor gasto de energia como mostra
a figura 2.11, com um certo custo de laténcia devido a necessidade de disputar recursos da
GPU com outras parti¢des, porém utilizar modelos de tamanhos variados simultaneamente
permite a implementagdo de modelos mais complexos gastando ainda menos energia.

Os autores propdem encontrar a melhor configuracdo a partir de um problema de
otimizacdo definido da seguinte maneira:
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Figura 2.11: Laténcia e emissoes de carbono para particionamentos diferentes da GPU utilizando o
mesmo modelo (B. L1, SAMST et al., 2023)

Primeiro, seja x? um vetor onde x/ denota a configuracdo de particionamento esco-
lhida para a GPU de indice i, entre as GPUs alocadas para a resolucdo do problema, e
seja x” um vetor onde x}; o modelo escolhido para a parti¢do j da GPU i. Assim, temos
A(x?,x") e C(x?, x"), que respectivamente expressam a acuracia e a emissao de CO, de
um treinamento/inferéncia com uma configuragdo e modelos determinados.

Com Apge € Chase representando a acuracia e emissao de gas carbonico do modelo
mais acurado conhecido treinado sem particionamento, podemos calcular o diferencial
de acuracia e energia de (x?, x") da seguinte forma:

— Chase — E(xp’ xv) * IC

AC
Cbase

onde IC ¢ a intensidade de carbono da energia utilizada na implementacéo, e

_ A(xp: xv) — Abase

AA
Abase

A funcao de otimizacao, a ser maximizada, é expressa por
fxP,x")=AxAC+(1—-21) = AA

onde A é um parametro entre 0 e 1 que define o balanco entre maior acuracia e menor
gasto energético buscado no processo de otimizagdo. A Unica restricdo sugerida pelos
autores é uma restricdo de laténcia maxima L,,,, na inferéncia das configuragdes. Assim,
a otimizac¢do pode ser expressa por

max f(xf, x")
xP,xv

t.q. L(x?, x") < Lyax

Como o nimero de configuracdes possiveis pode ser grande demais para que seja
viavel testar todas elas, os autores sugerem representa-las por meio de um grafo bipartido
onde um conjunto de vértices representando modelos diferentes se ligam a outro conjunto
representando os tipos de parti¢cdes, com arestas cujo peso indica a quantidade de vezes
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em que um modelo especifico ocupa um certo tipo de parti¢ao dentro da configuragio. A
partir dessas representagdes, aplica-se o algoritmo de arrefecimento simulado (simulated
annealing), descrito no programa 2.2, para encontrar a configuragdo 6tima. A funcdo de
distancia usada para definir as vizinhancas no algoritmo ¢ a distancia de edicio de grafos
(graph edit distance), e a probabilidade de escolher um vizinho x¢" da configuracio x£
é definida por

h(x&) — h(x¥)

T )

P(x%,x%) = exp(—
onde T é o parametro de temperatura e

B(x®) = — F(x®) * min(1, LL(’;’:;)>

Nos testes realizados pelos autores, o arrefecimento simulado obtém resultados muito
proximos de uma busca exaustiva, em uma fragdo do tempo de execugdo, e ainda permite
certa flexibilidade na otimizacdo a partir do parametro A. Em comparacdo com a implemen-
tacdo dos maiores modelos sem particionamento, o método Clover conseguiu, para tarefas
de linguagem, utilizando os modelos ALBERT v2 que variam entre 12 e 223 milhoes de
parametros, reduzir em mais de 80% a emissao de carbono, com um custo de 4% na precisio.
Para modelos de classificagdo de imagens — os EfficientNet, também da Google, a reducéo
¢ um pouco maior, diminuindo a precisao em aproximadamente 2%. Em todos os casos,
como ¢é possivel observar no grafico mais a direita na figura 2.12, a laténcia é curiosamente
reduzida, ou seja, os gastos com a disputa de recursos pelas particdes é compensado pelo
menor nimero médio de operagdes realizados por elas.

@ Detection [ Language EEH Classification [ Overall]
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Figura 2.12: Resultados da técnica CLOVER para tarefas de detecg¢do de objetos, classificacdo de
imagens e processamento de linguagem natural (B. L1, SAMSI et al., 2023)

Programa 2.2 Arrefecimento simulado, como implementado por Li et al. (B. L1, SamsI
et al., 2023)

1 FUNcAO arrefecimento_simulado(X, d, R, Knax, Imaxs A T, Thnin)
2 k<0
3 i <0

cont —
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—> cont

4 x& < escolha_aleatoria(X)
5 enquanto k < K,y € i < Ipgy
6 x8 «—vizinho_aleatorio(x¢, X, d)
7 se h(x8, 1) < h(x4, 1) ou P(x&,x&, T) > aleatorio(0, 1)
8 x& « x&
9 k<0

10 senao

11 k+=1

12 T «maximo(Tyin, T- R)

13 i+=1

14 retorne x&

Por fim, uma simples estratégia de reducdo de energia é limitar a frequéncia maxima
das GPUs, como propde Stojkovic et al. (STojkovic et al, 2024). Para os testes, os autores
utilizam uma implementagdo da LLM LLama2 em 8 GPUs NVIDIA H100 com entradas e
saidas de trés tamanhos diferentes, analisando as nove combinagdes possiveis para gasto
energético, poténcia maxima e trés métricas de laténcia:

« time to first token ou TTFT, que denota o tempo até a geracdo do primeiro token de
saida.

« time between tokens ou TBT, expressando o tempo médio entre tokens gerados

« throughput ou T-put, ou seja, o numero de trabalhos de inferéncia realizados por
segundo

Nos testes, os autores encontraram que existem situacdes onde reduzir a frequéncia
diminui o gasto energético sem grande impacto na laténcia, como é o caso das entradas e
saidas grandes (1024 e 256 tokens, respectivamente), no qual a reducdo de frequéncia de
2.0 GHz para 1.2 GHz degrada em menos de 20% as métricas de laténcia, mas diminui o
gasto energético em aproximadamente 30%. No entanto, a relacdo entre frequéncia e gasto
energético nem sempre é proporcional: nas figuras 2.13, observa-se que para entradas
médias diminuir a frequéncia para 1.8 ou 1.6 GHz tende a aumentar o consumo de energia.
A técnica também potencializa o uso mais intenso de paralelismo de tensores entre as
placas, pois vé-se nas imagens 2.14 que entre o paralelismo de grau 2 (TP2) com alta
frequéncia e o de grau 8 (TP8) com menor frequéncia, o gasto energético é similar, porém
o TBT e o TTFT sao quase 50% menores para o TP8.
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Figura 2.13: Resultados da reducdo de frequéncia das GPUs para inferéncias de LLMs em trés tamanhos
de entrada e saida diferentes (S, M, L) (STojxovic et al., 2024)
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Conclusao

Neste trabalho, foi feito um estudo sobre maneiras de calcular e reduzir a emissao de
CO, e demais gases poluentes, principalmente a partir da reducao do gasto energético, de
aplicacdes de aprendizado de maquina, com um foco circunstancial em grandes modelos
de linguagem baseados em Transformers.

Percebe-se que a necessidade de se desenvolver formas de estimar as emissdes surge da
falta de dados oficiais confiaveis sobre essas emissdes. Sobre o carbono incorporado, a falta
de dados ou dados de baixa qualidade tornam o calculo inviavel, mesmo com o nivel de
granularidade maior fornecido pelo modelo STEC em relacdo ao ACT, enquanto o calculo
do carbono operacional se torna trivial pelo uso de profilers, mas o resultado do profiling é
bastante dependente do hardware utilizado. Logo, mesmo com modelos puiblicos como os
modelos DeepSeek, é dificil replicar perfeitamente o processo de treinamento e inferéncia.

Dos métodos de reducéo, aqueles baseados em otimizar o uso do hardware sio prova-
velmente mais promissores no ambito dos modelos comerciais, tornam o treinamento e
a inferéncia mais rapidos sem piorar as métricas de qualidade da inferéncia. No entanto,
é necessario explorar mais as relacdes de custo-beneficio entre as métricas dos modelos
e o custo operacional, para que seja possivel aplicar os demais métodos, tornando as
aplicacdes mais sustentaveis.

E interessante também que trabalhos futuros sejam dedicados a alinhar perspectivas
ecologicas sobre IA/ML com outras teorias de ecologia e sustentabilidade, como o principio
dos 3 Rs (reduzir, reutilizar e reciclar) e os Objetivos de Desenvolvimento Sustentavel
definidos, definidos pelo programa da ONU Transformando o nosso mundo: a Agenda
2030 para o Desenvolvimento Sustentavel (NACOES UNIDAS, 2016). Os 17 objetivos néo
tratam apenas do cuidado com o meio-ambiente e reducdo das diversas formas de poluicéo
ambiental; tratam também de questdes humanitarias como o fim da pobreza e da fome
(objetivos 1 e 2), promocgdo da igualdade de género (objetivo 5) e manutencio da paz
(objetivo 16).
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