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Resumo

Luca Diogo da Silva. Uma Análise sobre Gasto de Energia e Emissão de Poluentes
nas Aplicações de Aprendizado de Máquina. Monografia (Bacharelado). Instituto de
Matemática e Estatística, Universidade de São Paulo, São Paulo, 2025.

A atual expansão do mercado de modelos de aprendizado de máquina (ML — machine learning) esteve
ancorada não só no desenvolvimento de modelos mais sofisticados para resolver problemas complexos,
como o uso de Transformers para problemas de processamento de linguagem natural e geração de imagens,
mas também no aumento quantitativo no número de parâmetros dos modelos. Para servir esses grandes
modelos e atender a cada vez mais usuários, novos datacenters estão sendo construídos no mundo todo,
tornando necessário analisar o impacto ecológico dessa expansão. Essa análise não é trivial porque os dados
de consumo das maiores aplicações de ML — geralmente modelos de linguagem em aplicações comerciais
— raramente são divulgados de forma detalhada, assim como configurações do modelo e de hardware que
permitiriam a replicação dos processos de treinamento e inferência. Neste trabalho, avaliou-se o gasto de
energia e consequente emissão de gases poluentes pelas implementações de modelos de ML, explorando
modelos para o cálculo dessas emissões de forma independente, e métodos para reduzí-las.

Palavras-chave: energia. emissões de poluentes. dióxido de carbono. aprendizado de máquina. grandes
modelos de linguagem. inteligência artificial.





Abstract

Luca Diogo da Silva. Uma Análise sobre Gasto de Energia e Emissão de Poluentes
nas Aplicações de Aprendizado de Máquina. Capstone Project Report (Bachelor).
Institute of Mathematics and Statistics, University of São Paulo, São Paulo, 2025.

The current expansion of the machine learning model market has been based not only on the development
of more sophisticated models capable of solving complex problems, such as the use of Transformers for
natural language processing problems and image generation, but on a rise of the models’ numbers of
parameters. To serve these larger models to an increasing amount of users, new datacenters are being
built all over the worlds, which makes analysing the ecological impact of this expansion a necessary effort.
This analysis is far from trivial because usage and resource consumption data of the major applications of
ML — usually language models in commercial applications — are hardly ever published with appropriate
detail; neither are the model and hardware settings that would make replicating the training and inference
processes possible. In this work, we study the energy consumption and the resulting emission of polluting
gases by implementations of ML models, exploring ways to calculate those emissions independently, and
also ways to reduce them.

Keywords: energy. pollutant emissions. carbon dioxide. machine learning. large language models. artificial
intelligence.
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Introdução

A inteligência artificial (IA), em particular as técnicas de aprendizado de máquina
(machine learning — ML), têm sido uma das principais áreas de pesquisa na computação
dos últimos anos, pois o uso das redes neurais, com sua capacidade de aproximar qualquer
função contínua, é o melhor método encontrado até agora para a resolução computacional
de vários problemas, como o reconhecimento de imagem e áudio, predição da estrutura
tridimensional de proteínas e o processamento de linguagem natural (natural language

processing — NLP).

Essa última aplicação recebeu um salto qualitativo em 2017 com a publicação do
artigo Attention Is All You Need, em que pesquisadores da Google Brain descreveram
pela primeira vez os modelos Transformers, cujo mecanismo de “atenção” (attention) se
mostrou mais eficiente na codificação de relações sintáticas e semânticas entre as palavras
— ou tokens — de um texto quando comparados aos modelos com recorrência, até então
considerados estado-da-arte (Vaswani et al., 2023). Esses modelos, combinados aos modelos
de difusão usados na geração de imagens e vídeos, são a base da chamada “IA generativa”
e estão no centro do último boom mercadológico da IA que se iniciou ao final de 2022,
quando a organização OpenAI disponibilizou o ChatGPT, um chatbot baseado nos modelos
proprietários GPT (generative pre-trained Transformers — Transformers generativos pré-
treinados).

Desde então, segundo pesquisa anual da empresa de consultoria McKinsey, a por-
centagem de empresas que relataram, nas pesquisas anuais da consultoria, usar IA em
pelo menos um de seus processos internos cresceu de 50% a 88% entre 2022 e 2025, e,
especificamente, de 33% para 79% no uso de IA generativa (Singla et al., 2025), como
mostra a Figura 1. Já a OpenAI relatou que entre 2024 e 2025, o número de prompts diários
aumentou mais de cinco vezes, de 451 milhões para 2,63 bilhões prompts feitos por 700
milhões de usuários (Chatterji et al., 2025), enquanto o Gemini, concorrente do ChatGPT
desenvolvido pela Google, atinge 350 milhões de usuários por mês, como descrito em
documentos internos da empresa publicados durante o julgamento antitruste em curso
nos Estados Unidos (Diaz, 2025).

Além do aumento do número de usuários, e, portanto, de inferências, os modelos que
compõem os mais populares produtos de IA também estão cada vez maiores. Em 2015,
antes do advento dos Transformers, engenheiros da Digital Reasoning já haviam divulgado
a criação de um modelo de 160 bilhões de parâmetros para NLP (Trask et al., 2015). O
GPT-3, de 2020, base das primeiras versões do ChatGPT, foi o último modelo da OpenAI a
ter a sua quantidade de parâmetros publicada: 175 bilhões de parâmetros. Estima-se que
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Figura 1: Uso de ferramentas de IA por empresas entrevistadas pela McKinsey (Singla et al., 2025)

tanto os GPTs 4 e 5, quanto seus concorrentes de performance similar como o Google
Gemini e Anthropic Claude Opus, tenham parâmetros na ordem de trilhões, tomando
como referência os modelos DeepSeek v3, com 671 bilhões de parâmetros (DeepSeek-AI
et al., 2025), e Qwen3-Max, da Alibaba Cloud, com “mais de 1 trilhão” (Team, 2025). Esses
modelos estado-da-arte, por via de regra, usam apenas uma parte desses parâmetros em
cada inferência, lançando mão do mecanismo de mistura de especialistas (mixture-of-

experts - MoE), onde — como mostra a Figura 2 — na camada final dos Transformers, a
grande rede neural que gera o próximo token é substituída por um conjunto de redes
menores, das quais apenas uma é selecionada pelo modelo a cada token, a partir de uma
outra rede neural anterior — chamada de roteadora (router) — geradora de probabilidades
para cada especialista. Ainda assim, o número de parâmetros ativos em uma inferência
é provavelmente crescente entre os modelos comerciais.

Para servir esses modelos cada vez mais computacionalmente caros para mais usuários,
há uma grande expansão na quantidade e tamanho de datacenters pelo mundo, resultando
num aumento no consumo total de energia. De acordo com outra pesquisa da McKinsey,
a demanda global por potência energética de datacenters pode crescer de 55 gigawatts
para 171 a 298 gigawatts entre 2025 e 2030, ou seja, crescimentos anuais entre 19% e 27%
(Srivathsan et al., 2024). Já o Lawrence Berkeley National Laboratory estimou em 2024
que o consumo total de energia por instalações nos EUA ir de 176 TWh (terawatts-hora)
por ano para 580 TWh, representando 12% do consumo no país (Shehabi et al., 2024).

O alto consumo energético pode ter um grande impacto ecológico caso a fonte ener-
gética utilizada tenha alta intensidade de carbono (IC), isto é, emitem mais dióxido de
carbono (CO2) por watt-hora de energia produzida. A região norte do estado da Virginia,
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Figura 2: Diferença entre blocos de decodificação de Transformers tradicionais e com MoE (Chawla,

2025)

onde, de acordo com a Synergy Research Group, está localizado 14% dos datacenters de
hiperescala, medido em potência energética, é bastante dependente de fontes de alta IC:
por volta de 62% da energia utilizada no estado vem do gás natural (Synergy Identifies the

World’s Top 20 Locations for Hyperscale Data Centers 2024).

É comum empresas tentarem compensar essas emissões pela compra de certificados de
energia renováveis (renewable energy certificate — REC), que comprovam um investimento
e uso de energia renovável nas instalações da empresa. Contudo, como um REC pode ser
emitido em qualquer parte dos EUA, a sua emissão não significa uma mudança na provisão
de energia nos grandes pólos de datacenters, logo o impacto ecológico ainda existe e é
fortemente concentrada em pequenas áreas. Uma reportagem do The Guardian apurou que,
em 2023, quando se retira as compensações por RECs, as emissões de CO2 por datacenters

da Meta aumentam em 3100 vezes, enquanto as da Apple aumentam em 402 vezes e as da
Microsoft em 21, ou seja, políticas compensatórias como RECs e créditos de carbono, apesar
de valiosas, são insuficientes para lidar com emissões bastante localizadas (O’Brien, 2024).

Diante deste cenário de crescimento acelerado e incertezas em relação ao impacto
ecológico presente e futuro das grandes implementações de IA/ML, este trabalho se propõe
a analisar formas de estimar o gasto energético das aplicações e diminuir suas emissões
em duas principais frentes:
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• o carbono incorporado, isto é, emissões de gases poluentes durante o processo
produtivo do hardware

• o carbono operacional, ou seja, emissões a partir do uso do hardware, equivalente às
emissões das fontes da energia fornecida a ele
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Capítulo 1

Carbono Incorporado

Iniciaremos nossa análise pelo processo de produção do hardware utilizado nas apli-
cações de ML, com um foco particular nos equipamentos estado-da-arte utilizados nos
maiores datacenters, chamados de hiperescaladores ou hyperscalers. Segundo um estudo
da McKinsey de 2024, até 2030, essas instalações concentrarão cerca de 85% das implemen-
tações de IA e ML, sendo aproximadamente 25% de modelos próprios e 60% de modelos de
terceiros a partir do fornecimento de ambientes em nuvem. (Srivathsan et al., 2024)

Para isso, usa-se o conceito de carbono incorporado (embodied carbon), que corres-
ponde ao cálculo de todo o gasto energético, na forma de emissão de CO2 e outros gases
provocadores de efeito-estufa, na produção de certo objeto, desde a extração das matérias-
primas necessárias, manufatura, montagem e transporte da fábrica para os consumidores.
Cálculos mais robustos incluem também os gastos no descarte do objeto após o fim de
sua vida útil (Hammond e Jones, 2009).

O cálculo para peças de hardware tende a ser bastante complexo, devido à dificuldade
de acesso aos dados de todas as empresas envolvidas no processo de fabricação de uma
peça. Dessa forma, ao invés de desenvolver análises totalmente independentes, geralmente
se utiliza os dados produzidos pelos próprios fabricantes, como as avaliações de ciclo de
vida (ACV) feitas por empresas como Dell e Seagate, para seus produtos. Evidentemente,
isso torna o estudo do carbono incorporado suscetível a subnotificação. Para evitar esse
problema, a organização ISO (International Organization for Standardization) criou a série
de padrões 14040, definindo metodologias para o ACV. No entanto, ainda não há um padrão
específico para hardware. A Figura 1.1 ilustra a gama diversa de informações utilizadas
para estimar o carbono incorporado, por meio do modelo ACT, que será explorado na
seção seguinte.

1.1 Modelos de Cálculo e Estimativa

Dadas as limitações do método ACV, novos métodos foram desenvolvidos na academia
e indústria para obter informações mais corretas sobre o carbono incorporado no hardware

computacional.
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Figura 1.1: Diagrama de dados que compõem o modelo ACT (Gupta et al., 2022)

O primeiro método que analisaremos é o ACT (Gupta et al., 2022), publicado em 2022
a partir de uma parceria de pesquisadores da Universidade de Harvard e da Meta. Com o
intuito de promover a projeção e desenvolvimento de hardware menos poluente, o modelo
busca utilizar dados mais especializados do que aqueles divulgados pelo produtor final,
como dados publicados pela Taiwan Semiconductor (TSMC) — uma das maiores produtoras
de semicondutores do mundo, que tem empresas como Apple, Nvidia, Qualcomm e Sony
como clientes.

As emissões são divididas em três tipos:

• emissões de energia, relacionadas à geração da energia elétrica consumida nos
processos produtivos (portanto, dependentes da intensidade de carbono das fontes).

• emissões de gases, relacionadas a gases resultantes da queima de produtos químicos
(exceto combustíveis, que se encaixariam na categoria anterior).

• emissões de matéria-prima, originadas na extração e transporte destas.

Para unidades de processamento como CPUs, GPUs e FPGAs, compostas dos mes-
mos semicondutores organizados de forma diferente, considera-se que as emissões 𝐸 são
proporcionais à àrea de processamento da peça:

𝐸 =
1

𝑌
∗ área ∗ (𝐼𝐶 ∗ 𝐸𝑃𝐴 + 𝐺𝑃𝐴 + 𝑀𝑃𝐴)

Onde:

• Y — a eficiência (yield) da fábrica (um número entre 0 e 1 representativo da proporção
de semicondutores que não são descartados durante a produção)

• IC — intensidade de carbono da fonte de energia

• EPA — energia por área do semicondutor

• GPA — emissões de gases por área

• MPA — emissões de matéria-prima por área
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Já para unidades de armazenamento (HDDs, SSDs e memória RAM), as emissões 𝐸 são
proporcionais à capacidade de armazenamento, em bytes, por meio da medida carbono
por byte (CPB):

𝐸 = 𝐶𝑃𝐵 ∗ capacidade em bytes

Com essas definições, além de estimar o carbono incorporado em um computador
ou datacenter, é possível fazer previsões sobre o impacto da substituição de um certo
componente, ou de mudanças no próprio processo produtivo. Por exemplo, os autores
estimam que, comparada às fábricas da TSMC, bastante dependentes de combustíveis
fósseis, uma fábrica de semicondutores utilizando energia 100% renovável teria uma
redução de aproximadamente 66% nas emissões de energia por área de chip ao produzir
pastilhas de 3nm (o menor tamanho comercializado hoje), e de aproximadamente 60%
para pastilhas de 10nm, ainda utilizadas em processadores Intel Raptor Lake (Figura 1.2).
Ou ainda, pastilhas de 3nm e 5nm gastam quase a mesma quantidade de energia por cm²
produzido, porém gastam 28% a mais que pastilhas de 7nm feitas com a mesma tecnologia
(litografia ultravioleta extrema).

Figura 1.2: Emissão de CO2 por tecnologia de semicondutor, considerando variações no fornecimento

de energia renovável (Gupta et al., 2022)

O modelo Spatial-Temporal Embodied Carbon (STEC) (Zhang et al., 2024) estende
ACT ao considerar o tempo e espaço onde certo componente foi produzido, já que a
disponibilidade de energia de fontes diferentes é fortemente relacionada ao local geográfico,
assim como certas fontes de energia renovável, como solar e eólica, também variam suas
efetividades conforme as estações do ano.

Sendo assim, o modelo STEC propõe análises em três níveis de granularidade:

• ano de fabricação e zona do planeta, baseado em grupos de países que compartilham
um mesmo tratado energético (STEC-ZY)

• estação do ano e país de fabricação (STEC-CS)

• dia do ano e país de fabricação (STEC-CD)
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Essa divisão dá enfoque às emissões de energia, pois, segundo os autores, as outras
duas formas de emissão são menos suscetíveis à variação de espaço e tempo.

A maior granularidade em relação ao ACT gera medições de carbono incorporado
bastante distintas. Analisando o processo produtivo de 6 dos maiores fabricantes de se-
micondutores, com produção em Taiwan, EUA, Itália, Irlanda, China e Coreia do Sul, a
divergência média entre STEC-CD e o ACT para o ano de 2021 foi de 10,88%, e a máxima
de 40,54%. Para os modelos menos granulares, a variação média aumenta, chegando a
18,01% entre STEC-ZY e ACT. A figura 1.3 ilustra essa divergência mostrando emissões na
produção de CPUs em fábricas italianas e irlandesas. Ambos os locais possuem fontes de
energia limpa, mas com disponibilidade variável ao longo do ano: na Itália, a energia solar
é mais forte durante o verão, enquanto na Irlanda, há potencial de energia eólica, mais
forte nos invernos. Mesmo com essa variação, a média resultante do carbono incorporado
nas duas localidades é menor do que a média encontrada por ACT — aqui representado
por STEC-GY (global-year — ano de fabricação e global).

Figura 1.3: Variação no carbono incorporado na produção de CPUs em fábricas na Irlanda (IE) e Itália

(IT) durante o ano (Zhang et al., 2024)

Além de maior precisão na análise do presente, STEC pode auxiliar no planejamento
desses fabricantes na distribuição de sua produção e instalação de novas fábricas. Por
exemplo, a já citada abundância de energia eólica no inverno irlandês faz com que fábricas
lá instaladas, como o campus fabril da Intel Leixlip, tenha menos emissões energéticas que
fábricas em Taiwan, onde, em grande parte, se utiliza o carvão como fonte de energia.

Segundo Li et al., a maior parte do carbono incorporado nos grandes datacenters

costuma ser o das GPUs. (B. Li, Basu Roy et al., 2023) Os servidores destinados a operações
de ML um número maior de GPUs comparada às CPUs, em proporções 2:1 como no NVIDIA
GB200 NVL72, base do datacenter Fairwater da Microsoft, ou 4:1 como no JUPITER Booster,
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datacenter considerado o quarto mais eficiente do mundo em termos de operações de ponto
flutuante por segundo (FLOPS), na lista TOP500 de Junho de 2025. (TOP500, 2025)

A preferência por esses componentes se justifica pelas suas maiores eficiências nos
cálculos matemáticos simples, como multiplicações de matrizes e de tensores, essenciais
nos processos de ML, quando comparados às tradicionais CPUs. Quando comparamos
uma GPU e uma CPU estados-da-arte, como, respectivamente, a AMD MI250X e a AMD
EPYC 7763, a primeira apresenta aproximadamente duas vezes mais carbono incorporado
que a segunda (B. Li, Basu Roy et al., 2023). Porém, ao dividirmos essas quantidades pelo
número máximo de operações de ponto flutuante (FLOP) por segundo — uma maneira de
avaliar o equilíbrio entre performance e emissões no processo produtivo — a GPU passa
a ser nove vezes mais eficiente nesse aspecto.

No entanto, os autores destacam que componentes de armazenamento de dados, como
HDDs e SSDs, também representam uma parte significativa dessas emissões. Por exem-
plo, 36% do carbono incorporado ao Frontier, número 2 da TOP500, está nas suas GPUs,
enquanto 30% está nos HDDs e 12% nos SSDs. Pelo estudo de Zhang et al., as emissões
de ambos os componentes são similares em termos brutos, sendo que HDDs são vantajo-
sos em relação à capacidade de armazenamento e os SSDs vantajosos na velocidade na
transferência (leitura e escrita) de dados. (Zhang et al., 2024)

1.2 Formas de Redução
Além de apresentar o método ACT, Gupta et al. também explana algumas formas de

reduzir a emissão do carbono incorporado, com foco em sistemas móveis, mas que são
aplicáveis para casos gerais. (Gupta et al., 2022)

Primeiramente, os autores propõem um método de desenvolvimento de hardware

especializado onde se fixam as métricas de desempenho e busca-se, como num problema de
otimização, minimizar a emissão de carbono incorporado. Usando como base a arquitetura
de hardware aberto NVDLA, desenvolvido pela NVIDIA, fixado o problema de processar
30 imagens de mesma resolução por segundo, os autores exploram os possíveis números
de unidades de computação aritmética básica (unidades MAC) resolvem o problema, ao
mesmo tempo que otimizam métricas de carbono.

Nesse exemplo, como mostra a figura 1.4, 256 MACs são suficientes para atingir o
processamento necessário, e é o valor ótimo, entre potências de dois, encontrado pelos
autores. 2048 MACs é o valor que otimiza a performance, aproximadamente nove vezes a
mais que o objetivo de 30 imagens por segundo, mas a um custo de emissão incorporada
3.3 vezes maior.

O conceito proposto de desenvolvimento de hardware com objetivos de performance
bastante específicos parece promissor, e é pouco abordado na literatura acadêmica, porém
sua viabilidade no contexto atual pode ser limitada pois as indústrias que circundam o
mercado de ML têm operado em uma lógica de corrida tecnológica, tratando a perfor-
mance como o principal atrativo comercial. Dessa forma, essa mudança de estratégia
por parte dos fabricantes de hardware pode ser bastante custosa, e caso não seja adotada
pelos consumidores desses produtos — empresas que implementam modelos de ML e os
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Figura 1.4: Relação entre carbono incorporado e performance das unidades MAC. Os pontos destacados

são quantidades de MACs em potências de dois, de 32 a 2048 (Gupta et al., 2022)

incorporam em seu software —, a tendência é que os componentes sejam substituídos com
maior frequência, anulando os benefícios dessa forma de redução.

Os autores também propõem duas formas de reutilização de hardware: balancear o
uso de CPUs e hardware especializado, como GPUs, FPGAs e DSPs, e estender a vida
útil dos componentes.

Já foi descrito que GPUs carregam mais carbono incorporado nos seus processos
produtivos que as CPUs, e que se entende, do ponto de vista do consumidor, que tanto
essas emissões quanto as operacionais são compensadas pela maior performance nas tarefas
de ML. No entanto, essa interpretação é bastante limitada: os benefícios dos hardware

específicos não são inerentes à sua existência, mas surgem da sua utilização correta e bem-
projetada. Assim, são necessários experimentos e cálculos para definir quais componentes
usar, e como usá-los, de forma a evitar a subutilização e minimizar as emissões.

Por exemplo, supondo uma GPU e uma CPU com mesmas quantidades de carbono
incorporado, um servidor com 4 dessas GPUs utilizado em 50% possui 67% mais carbono
incorporado do que o necessário, ou seja, que um servidor com 2 GPUs utilizado em 100%,
sem considerar as emissões operacionais das placas subutilizadas. O mesmo princípio de
balanço pode ser aplicado a SSDs e HDDs: SSDs apresentam mais carbono incorporado que
HDDs de mesma capacidade, mas possuem menor carbono operacional e maior velocidade
nas operações de leitura e escrita. A figura 1.5 demonstra a diferença nas emissões dessas
peças, supondo uma potência média de 4.2 W para um HDD e 1.3 W para um SSD.

Ademais, Wadenstein e Vanderbauwhede explicam que substituir um SSD de 500 GB
por outro de 10TB incorre em um aumento de 842 kgCO2, 70% do total do servidor utilizado
de exemplo. Nesse contexto, é necessário que a utilização do novo armazenamento seja
maior que 8,5% para que a substituição seja compensatória ecologicamente. (Wadenstein
e Vanderbauwhede, 2025)
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Figura 1.5: Carbono incorporado em HDDs e SSDs de 1TB (Tannu e Nair, 2023)

Mais adiante, é necessário refletir sobre a extensão da vida útil dos componentes, de
forma a diminuir a demanda, e a consequente produção, de novas peças. Os dispositivos
de armazenamento (HDDs e SSDs) são os mais críticos nesse aspecto, pois o limitante de
suas vidas úteis não é apenas a lentidão em relação ao início desse período ou às peças de
tecnologia mais recente, mas também a corrupção dos dados armazenados.

Uma maneira de estender a vida útil de um SSD é aumentar o seu provisionamento
excessivo, isto é, capacidade de armazenamento que não é utilizada diretamente pelo
usuário, mas pelo firmware do dispositivo para reduzir a quantidade de erros de leitura
e escrita. Supondo que há manutenção no espaço útil do SSD, aumentar seu provisiona-
mento excessivo é, evidentemente, aumentar o carbono incorporado. Por isso, busca-se
um equilíbrio entre esses dois fatores. Gupta et al. encontram que o valor ótimo para uma
vida útil de 2 anos é 16%, e 34% para 4 anos. (Gupta et al., 2022)

Tannu e Nair propõem outras maneiras de extensão, como a implementação de al-
goritmos mais potentes de correção de erros, protegendo o sistema contra corrupção de
dados, ao custo de maior latência — e, portanto, gasto energético — na leitura e escrita; o
uso conjunto de células de nível único (SLC), excelentes na durabilidade e velocidade, e
de nível múltiplo (MLC), excelentes na capacidade de armazenamento e a transformação
de dispositivos MLC em SLC para tarefas menos exigentes, quando erros se tornarem
frequentes. (Tannu e Nair, 2023)
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Capítulo 2

Carbono Operacional

2.1 Modelos de Cálculo e Estimativa

Recentemente, duas das grandes empresas do mercado de ML divulgaram o custo
médio da inferência de suas aplicações. Em junho de 2025, Sam Altman, CEO da OpenAI,
afirmou em um post de seu blog pessoal que o processamento médio de um prompt pelo
ChatGPT gasta 0,34 Wh (Altman, 2025), enquanto a Google afirmou em um artigo que
o custo médio por prompt do Google Gemini é de 0,24 Wh, com emissão de 0,02 gCO2𝑒

(Elsworth et al., 2025).

A publicação de Altman não contém metodologia ou dados que embasem a estatística
publicada, mas o artigo publicado pela Google detalha a metodologia de cálculo, medindo
a energia gasta pelos “aceleradores de IA” (TPUs e GPUs, provavelmente), CPU e DRAM,
além da energia gasta pelos sistemas externos aos computadores, como os de resfria-
mento. Apesar disso, o artigo não apresenta as medidas capturadas ou as configurações
dos datacenters para a replicação e verificação dos resultados. Ou seja, como ainda há
muita limitação de dados e de acesso aos ambientes dessas grandes aplicações, é preciso
desenvolver formas de estimar o carbono operacional de forma independente.

Schwartz et al. argumentam que a melhor métrica para calcular as emissões de CO2 de
um modelo de ML é o número de operações em ponto flutuante (FLOPs) realizadas durante
o treinamento, ou durante uma inferência. (Schwartz et al., 2020) A partir desse valor,
podemos, a partir das especificações de hardware, determinar a quantidade de energia
gasta, em watts-hora (Wh) e sabendo a intensidade de carbono das fontes de energia
utilizadas, determinar a quantidade de CO2 emitido.

Os níveis de suporte para esse cálculo nos frameworks de ML são variados. Além de
pacotes independentes desenvolvidos pela comunidade, como (Sovrasov, 2024) e (He,
2022), o PyTorch (Paszke et al., 2019), principal biblioteca de ML em Python, oferece a
opção “with_flops” em seu módulo profiler, para calcular os FLOPs durante a execução. No
entanto, as únicas operações analisadas, até agora, são soma e multiplicação de matrizes, e
convoluções bidimensionais, sem suporte para funções de ativação tal qual Softmax e ReLU,
ou para convoluções tridimensionais, bastante usadas em análises de vídeo, por exemplo.
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A biblioteca JAX (Bradbury et al., 2018), também bastante popular, oferece estimativas
de custo pela função “cost_analysis” antes da compilação dos modelos.

Muitos autores também se dedicaram a calcular, de forma prévia, o número de operações
de modelos de MLs. Para Transformers, por exemplo, usa-se a aproximação de 6𝑁 operações
por token, sendo 𝑃 o número de parâmetros do modelo. O fator escalar 6 vem do fato de uma
inferência (ou forward-pass) custar aproxidamente 2𝑝, e uma atualização de parâmetros
(backward-pass) custar o dobro de um forward-pass, logo 4𝑝. Hoffmann et al. oferece um
cálculo mais detalhado da inferência para esses modelos.

Para os embeddings, temos

𝐹𝐿𝑂𝑃embed = 2 ∗ 𝑛ctx ∗ 𝑛vocab ∗ 𝑑modelo

onde 𝑛ctx expressa o tamanho da janela de contexto, 𝑛vocab o tamanho do vocabulário
—tokens passíveis de serem gerados pelo modelo — e 𝑑modelo a dimensionalidade da repre-
sentação vetorial (o embedding) dos tokens.

As camadas de atenção podem ser decompostas em cinco operações:

• a projeção da entrada nos espaços 𝑄, 𝐾 e 𝑉 (query, key, value) tem custo

𝐹𝐿𝑂𝑃QKV = 2 ∗ 3 ∗ 𝑛ctx ∗ 𝑑modelo ∗ 𝑑key ∗ 𝑛camadas

• o produto 𝑄𝐾 tem custo

𝐹𝐿𝑂𝑃prodQK = 2 ∗ 𝑛
2
ctx ∗ 𝑑key ∗ 𝑛camadas

• o Softmax após o produto 𝑄𝐾 tem custo

𝐹𝐿𝑂𝑃softQK = 3 ∗ 𝑛
2
ctx ∗ 𝑛camadas

• a redução (multiplicação pela matriz 𝑉 ) custa

𝐹𝐿𝑂𝑃prodV = 2 ∗ 𝑛
2
ctx ∗ 𝑑key ∗ 𝑛camadas

• por fim, a projeção de volta às dimensões do modelo custa

𝐹𝐿𝑂𝑃proj = 2 ∗ 𝑛ctx ∗ 𝑑modelo ∗ 𝑑key ∗ 𝑛camadas

onde 𝑛camadas representa o número de camadas de atenção (ou attention heads) e 𝑑key é
a dimensão da matriz-chave (key ou 𝐾 ).

Depois, a camada de rede neural tem suas operações expressas por

𝐹𝐿𝑂𝑃neural = 2 ∗ 2 ∗ 𝑛ctx ∗ 𝑑modelo ∗ 𝑑neural

sendo 𝑑neural a dimensão da saída da rede neural. O último passo é realizar um outro
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Softmax de custo

𝐹𝐿𝑂𝑃softmax = 2 ∗ 𝑛ctx ∗ 𝑛vocab ∗ 𝑑modelo

Comparando essas fórmulas com a estimativa 6𝑝, Hoffmann et al. encontra que, para
modelos reais, a diferença é pequena, como mostra a figura 2.1.

Figura 2.1: Comparação entre o método de Hoffmann et al. para cálculo de FLOPs em Transformers e

a aproximação 6𝑃 (Hoffmann et al., 2022)

Apesar de facilitar a comparação entre modelos, a métrica de FLOPs é bastante vulne-
rável às variações nas implementações dos modelos, principalmente na questão do uso
de memória, o maior fator para a subutilização das GPUs, como ilustrado por Ivanov et
al., afirmando que para uma implementação padrão do modelo BERT no Pytorch, 25,5%
do tempo de execução é gasto em operações de normalização de resultados, apesar de
essas operações representarem apenas 0,17% dos FLOPs, o que demonstra o alto custo da
transmissão de dados entre as unidades computacionais. (Ivanov et al., 2021)

O problema da subutilização dessas unidades motivou a Google a desenvolver a métrica
de eficiência de modelos de linguagem MFU (model FLOPs utilization — utilização de FLOPs
pelo modelo), definida pela razão 𝐹∗𝑇

𝑀
, onde F é a quantidade de FLOPs por token gerado, T

é o número de tokens gerados por segundo e M o valor máximo de FLOPs por segundo
realizados pelo computador. A métrica foi divulgada pela primeira vez em 2022 junto com
o modelo PaLM (Chowdhery et al., 2023), que atingia cerca de 46% de MFU. Segundo
Casson, as implementações mais populares de modelos baseados em Transformers até
2023 tinham MFU entre 10% e 65%. (Casson, 2023)

Faiz et al. desenvolveram o modelo LLMCarbon, que estima a emissão de CO2 a partir
da contagem de FLOPs e do cálculo do carbono incorporado. Exemplificaremos o funciona-
mento do modelo supondo o treinamento de um LLM baseado no modelo Transformer:

Primeiro, determina-se o número de FLOPs executados durante o treinamento. Como
foi visto anteriormente, em Transformers esse valor é próximo de 6𝑃𝑇 , onde 𝑃 é o número
de parâmetros do modelo e 𝑇 o número de tokens presentes no conjunto de dados de
treinamento.

Depois, é necessário obter o MFU do modelo. Caso não seja possível obtê-lo empirica-
mente, uma opção viável é estimá-lo a partir do número de peças de hardware especializado
(GPUs, TPUs, FPGAs e semelhante), utilizando uma fórmula inspirada pelo trabalho de
Narayanan et al. Essa fórmula supõe que existe um número 𝑁 de peças que obtêm eficiência
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ótima por meio de técnicas de paralelismo de dados (peças diferentes recebem entradas
diferentes, e os parâmetros aprendidos pelos modelos são agregados periodicamente),
de tensores (cada camada é particionada entre as peças) e pipeline (cada peça trata uma
camada diferente).

Essas 𝑁 peças atingem MFU mfu𝑁 , e estimamos o MFU de 𝑀 peças mfu𝑀 por:

{

𝛾0 ∗
𝑀

𝑁
∗ mfu𝑁 , se 𝑀 < 𝑁

𝛾1 ∗
𝑁

𝑀
∗ mfu𝑁 + 𝛾2, se 𝑀 > 𝑁

onde 𝛾0, 𝛾1, 𝛾2 são constantes a serem obtidas empiricamente. Com mfu𝑀 , o tempo 𝑡 de
execução do treinamento nas 𝑁 peças pode ser calculado como

𝑡 =
total de FLOPs realizados

𝑀 ∗ mfu𝑀 ∗ MAXFLOPS

onde MAXFLOPS representa o máximo de FLOPs por segundo que a peça consegue realizar.

O gasto de energia de um conjunto de M peças de hardware especializado iguais é,
portanto, expressa por

energia = 𝑊 ∗ mfu𝑀 ∗ 𝑡 ∗ 𝑀 ∗ PUE

onde W representa a potência máxima da peça, em watts, e PUE é a eficiência de uso
energético da infraestrutura do servidor. Para obter a quantidade de carbono emitido,
basta multiplicar a quantidade de energia gasta pela intensidade de carbono da matriz
energética que alimenta o servidor.

2.2 Formas de Redução

2.2.1 Redução do Número de Operações
Como vimos na seção anterior, a emissão de carbono operacional tem forte relação

com o tempo de execução das operações de inferência e treinamento dos modelos. Sendo
assim, otimizações que permitem reduzir o tempo de execução tendem a reduzir também
o gasto energético e as consequentes emissões de CO2.

Wang et al. propõem três técnicas, ilustradas no diagrama da figura 2.2 para a redução
do número de operações, durante o treinamento e inferência de modelos, com um foco em
redes neurais convolucionais (convolutional neural networks — CNNs), modelos utilizados
principalmente em problemas de visão computacional (Wang et al., 2019).

A primeira dessas técnicas (stochastic mini-batch dropping — SMD) consiste em definir
uma probabilidade (a princípio, 50%) para que, durante uma iteração do treinamento,
um pequeno conjunto de exemplos seja ignorada. Dessa forma, o número de operações
é reduzido em aproximadamente 50%, porém, segundo os experimentos dos autores, o
impacto nas métricas de corretude do modelo são pequenas, e pode até ser positivo, pois
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Figura 2.2: Diagrama dos métodos de Wang et al. para otimização de CNNs (Wang et al., 2019)

pular exemplos introduz certa variabilidade durante o treinamento que pode ser útil para
evitar pontos de sela e mínimos locais insatisfatórios na função a ser minimizada.

Treinando o modelo ResNet-74 na base de dados CIFAR-10, que contém 60000 imagens
coloridas de baixa resoluções a serem classificadas em 10 categorias, utilizando entre 64
e 128 mil iterações, a figura 2.3 mostra que empregar SMD resulta consistentemente em
maior acurácia que utilizar todas as amostras em todas as iterações, com uma diferença
máxima de 0.86% em 75 mil iterações, e mínima de 0.39% em 128 mil iterações.

Figura 2.3: Resultados do SMD em comparação à estratégia padrão de mini-batches (SMB — standard
mini-batch) (Wang et al., 2019)

A segunda técnica proposta, aplicada tanto no treinamento quanto na inferência, é
chamada de atualização seletiva de camadas baseado na entrada (input-dependent selective
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layer update — SLU). Os principais modelos baseados em CNNs, como as ResNets, frequen-
temente apresentam dezenas de camadas, provocando o desenvolvimento de métodos para
determinar quais camadas são essenciais para garantir a corretude da classificação de uma
entrada e quais camadas são pouco importantes ou podem ser ignoradas, em um mecanismo
parecido à combinação de especialistas (mixture of experts — MoE) nos Transformers.

Em particular, o SLU introduz pequenas redes neurais recorrentes antes de cada camada,
que recebem a saída da camada anterior e retornam um valor entre 0 e 1 que corresponde
à probabilidade da camada ser utilizada para aquele exemplo. Essas redes neurais podem
ter seus parâmetros treinados junto do restante do modelo, porém a um custo baixo devido
a serem redes pequenas.

Como na figura 2.4, esse método rende resultados melhores que o método de pro-
fundidade estocástica proposto por Huang et al., que ignora camadas aleatoriamente
com probabilidades que aumentam linearmente conforme a profundidade, priorizando as
primeiras camadas, que tendem a identificar as características mais cruciais da entrada.
Ajustando os parâmetros da profundidade estocástica para que o número de camadas
utilizadas seja próximo do SLU a cada passo, logo com número de operações similares,
SLU obtém acurácia consideravelmente melhor.

Figura 2.4: Comparação entre SLU e profundidade estocástica (SD —stochastic depth) (Wang et al.,

2019)

A acurácia é comparável até quando SLU utiliza menos camadas: uma implementação
de SLU utilizando 30% das camadas tem acurácia 0.86% maior que uma implementação de
profundidade estocástica com probabilidade inicial de 50%, ou seja, realizando, em média,
20% mais operações e consumindo mais energia.

A terceira técnica é o gradiente descendente de sinal preditivo (predictive sign gradient

descent — PSG). Essa técnica estende métodos anteriores, que, durante a retropropagação,
usam apenas o sinal dos gradientes para atualizar os parâmetros, para reduzir o custo
computacional das atualizações. No entanto, esses métodos ainda calculam os gradientes
com precisão máxima.
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Por sua vez, PSG considera apenas os bits mais significativos para o gradiente da função
de erro da saída do modelo e para a entrada (os autores sugerem 10 e 4 bits, respectivamente)
para aproximar ou "prever"o sinal do gradiente do parâmetro a ser otimizado. Os autores
explicam que a probabilidade de erro tem relação exponencial com o número de bits dos
gradientes, porém também determinam um híperparâmetro 𝜏 com o seguinte propósito:
se ao calcular o gradiente G de um parâmetro p utilizando o método PSG, encontramos
que |𝐺PSG

𝑝 | < 𝜏, então calculamos 𝐺𝑝 com precisão máxima, para minimizar a chance de
erro ao determinar o sinal de 𝐺𝑝.

Comparando o método PSG ao método de adotar parâmetros de 8 bits porém gradientes
de 32 bits, PSG economizou 60% de energia nos experimentos do artigo, com uma perda
absoluta de apenas 0.65% na acurácia (de 93.24% de classificações corretas a 92.59%).
Comparado ao método de utilizar parâmetros e gradientes de 32 bits, atualizando-os
apenas com os sinais, os resultados de eficiência são parecidos, mas com um pequeno
aumento na acurácia.

A escolha de hiperparâmetros pode também ter grande impacto no consumo energético.
Puvis de Chavannes et al. analisaram a relação entre vários hiperparâmetros — listados na
figura 2.5 — de modelos Transformer, o consumo energético e a perplexidade, métrica de
incerteza na geração de uma sequência de tokens (Puvis de Chavannes et al., 2021).

Figura 2.5: Lista de hiperparâmetros explorados por Puvis de Chavannes et al. (Puvis de Chavannes

et al., 2021)

Buscando minimizar o produto entre a perplexidade e o gasto energético (PEP -
perplexity-energy product), em kWh, para o modelo RoBERTa, um aprimoramento de-
senvolvido pelo Facebook ao modelo BERT, os autores realizaram uma busca bayesiana
pela combinação de hiperparâmetros como o número de camadas de atenção (attention



20

2 | CARBONO OPERACIONAL

heads), funções de ativação e tamanho do vocabulário, usando a ferramenta HyperOpt.

O estudo encontrou que, para as melhores configurações em termos de PEP, a correlação
entre a perplexidade e o custo de energia é alta e negativa (-0.88), porém, considerando
todas as 154 configurações, a correlação é de 0.5, ou seja, em muitos casos, é possível
reduzir ambas as métricas. As demais correlações podem ser observadas na figura 2.6.

Figura 2.6: Correlações entre hiperparâmetros e métricas encontradas por Puvis de Chavannes et al.

para os 15% melhores modelos em PEP (Puvis de Chavannes et al., 2021)

O hiperparâmetro de maior impacto é o número de camadas das redes neurais que
compõem a parte final dos Transformers, com correlação de 0,71 e -0,64 em relação à
energia e perplexidade, respectivamente, para os melhores modelos. A média de camadas
é de 1,91, com desvio padrão de 0,92. Esse valor é baixo comparado às 12 camadas padrão
do modelo RoBERTa, incorrendo em um custo de maior perplexidade que, segundo os
autores, poderia ser compensado com o uso de mais dados de treinamento, pois RoBERTa
foi treinado com aproximadamente 10 vezes mais exemplos.

A escolha da função de ativação é a segunda de maior impacto, com correlação de 0,66
para o consumo energético e 0,71 para a perplexidade, nos melhores modelos. Nesse cenário,
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a função GELU é a mais frequente, superando SiLU e a tradicional RELu, porém ela aparece
também em algumas das piores configurações, sendo a função de maior custo energético.

Curiosamente, o número de camadas de atenção tem correlação mais baixa quando
comparado ao número de camadas das redes neurais, sendo -0,22 para a energia e 0,36
para a perplexidade entre as melhores configurações. No caso geral, a correlação com
a perplexidade é quase nula: 0,057.

Os autores destacam que a probabilidade de dropout, ou seja, a probabilidade de anular
um certo parâmetro do modelo durante o treinamento, para evitar o sobreajuste, é um
dos únicos hiperparâmetros que tem impacto na perplexidade mas quase nenhum no
consumo energético, portanto pode ser otimizado buscando apenas a maior chance de
acerto. Nos modelos de maior PEP, a probabilidade de dropout média foi de 0,18, com
desvio padrão de 0,06 (figura 2.7).

Figura 2.7: Médias e desvios padrões encontrados por Puvis de Chavannes et al. para os hiperparâmetros

nos 15% melhores modelos em PEP (Puvis de Chavannes et al., 2021)

2.2.2 Otimização do Uso do Hardware
Outra importante forma de reduzir o carbono operacional é desenvolver maneiras

para utilizar o hardware mais eficientemente. As GPUs têm sido o foco dos estudos dessa
vertente pois as suas arquiteturas e funcionamento são essenciais para a viabilidade da
implementação de grandes modelos de ML, porém necessitam de estratégias específicas
para maximizar seus desempenhos.

Como vimos anteriormente, o principal fator a ser otimizado nas GPUs é a adminis-
tração da memória, pois a busca de dados na memória global ou compartilhada da GPU é
uma operação custosa que frequentemente causa interrupções nos programas.

Li et al. busca essa otimização especificamente para redes neurais convolucionais em
dois aspectos: escolher a ordem das dimensões dos tensores que mais acelera o acesso
aos dados pelas threads da GPU e reduzir chamadas de comando de leitura de memória
externa à GPU (C. Li et al., 2016).

Os tensores convolucionais geralmente possuem quatro dimensões:

• o número N de imagens processadas por iteração
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• o número C de mapas de atributos (feature maps)

• o comprimento W e altura H das imagens

Assim, existem 16 formas de representar esses tensores em memória, sendo que o
artigo analisa duas delas: a CHWN, utilizada pela biblioteca cuda-convnet com o algoritmo
tradicional de convolução, e o NCHW, aplicado pelo Caffe e cuDNN, que possuem imple-
mentações de convolução por meio da multiplicação de matrizes ou pela transformada
rápida de Fourier (fast Fourier transform — FFT). As demais formas foram descartadas ou
por terem resultados piores, como é o caso de HWCN e NHWC, ou por dificultarem a
aplicação das convoluções, como as transposições que separam as duas dimensões das
imagens (CHNW, por exemplo).

Para os testes, os autores apresentam uma adaptação da biblioteca Caffe com imple-
mentações próprias da mudança de disposição de CHWN e NCHW, e vice-versa, e da
convolução tradicional, testando-a para diferentes CNNs conhecidas, como a AlexNet e a
ZFNet, medindo o desempenho em algumas camadas dessas redes, cujas configurações
estão listadas na figura 2.8.

No que tange às convoluções, a disposição CHWN, com a convolução tradicional, tem
desempenho melhor quando C é pequeno, como na primeira camada de convolução de
cada rede, onde C corresponde ao número de canais da imagem (3 para imagens coloridas
RGB, 1 para imagens em escala de cinza). Aumentar o número de imagens processadas
também tende a favorecer essa configuração. Em média, a disposição e algoritmos ideais
para cada camada são 2,48 vezes mais eficientes que a outra opção, 2,08 vezes quando
consideramos o custo das transposições. Para a primeira camada da LeNet (CV1 na figura
2.9), processando 128 imagens 28x28 em escala de cinza com 16 mapas de atributos, CHWN
é mais de 6 vezes mais rápido que NCHW (4 vezes considerando a transposição).

Após a aplicação das convoluções, CNNs tipicamente possuem camadas de agregação
ou pooling, que reduzem a dimensionalidade das características calculadas nas camadas
anteriores por meio de operações de complexidade linear como médias ou seleção do
maior valor. Por isso, essas camadas, assim como a camada final de classificação, têm custo
computacional menor que as convolucionais, aumentando o impacto das operações de
leitura e escrita na memória.

Para essas camadas, CHWN se mostrou muito mais eficiente em todos os exemplos, pois
nessa disposição, as threads da GPU acessam, a cada leitura da memória global, endereços
consecutivos de memória, cada uma representando uma imagem processada. Quando
threads diferentes acessam endereços adjacentes de memória, dizemos que o acesso é
coalescente. Já para a disposição NCHW, os acessos não são consecutivos, visto que as
threads aqui representam os mapas de atributos mas a dimensão contínua da memória
é a coluna do mapa. Logo, o número de bytes lidos por operação é fixo, mais operações
de leitura são necessárias em uma iteração.
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Legenda:
• Ni: número de imagens ou batch size

• Co: número de kernels de convolução
• H/W: altura e comprimento, respectivamente
• Fw/Fh: comprimento e altura dos kernels

• Ci: canais de entrada
• S: stride, ou o tamanho do passo entre operações de pooling consecutivas em uma

mesma entrada
Figura 2.8: Configurações de camadas convolucionais (CV) e de pooling (PL) explorados por Li et al.

(C. Li et al., 2016)

Na camada de classificação, há uma outra otimização específica que pode ser empregada:
a fusão de kernels em CUDA. Nas três bibliotecas exploradas, cada passo do algoritmo
de classificação Softmax (programa 2.1) é implementado em um kernel diferente, ou seja,
a cada passo, os resultados são transferidos para a memória externa à GPU para serem
lidos no início do próximo passo, junto com as instruções do novo kernel. Assim, se fosse
possível executar o algoritmo em um único kernel, menos transações de memória externa
seriam necessárias, otimizando o processo.
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Programa 2.1 Softmax (sequencial)

1 funcao softmax(v)
2 max ← v[0]
3 r ← vetor nulo de mesmo tamanho de v

4 para todo elem em v

5 se elem > m

6 max ← elem

7 fim
8 fim
9 soma ← 0

10 para todo i em 0..tamanho(v)
11 x ← exp(v[i] − max)
12 r[i] ← x

13 soma += x

14 fim
15

16 para todo elem em r

17 elem /= soma

18 fim
19 devolva r

No artigo, apresenta-se um kernel onde cada bloco de threads representa uma imagem
processada, e cada thread do bloco representa um pequeno conjunto de categorias. Nesse
contexto, as threads podem operar em paralelo, consultando a memória compatilhada
da GPU apenas para ler e escrever max e soma (linhas 10–14 e 16–18 do programa 2.1).
Essa otimização surte grande efeito quando o número de categorias é alto. Para uma
configuração de 128 imagens sendo classificadas em 10 mil categorias, o novo kernel

atingiu 94% da largura de banda da GPU utilizada, sendo 3,58 vezes mais rápido que a
implementação do cuDNN, a melhor entre as bibliotecas analisadas.

Figura 2.9: Otimização ao usar a transposição e algoritmo ideias para cada camada convolucional

em Li et al., considerando algoritmos simples (naive) ou mais elaborado (optimized) de transposição

(C. Li et al., 2016)
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A fusão de kernels é também um dos métodos apresentados em Ivanov et al., que busca
aprimorar o uso da memória por modelos Transformers (Ivanov et al., 2021). Aplicando-
a para operações simples como funções de ativação, aplicação de viéses e dropouts, foi
possível acelerar algumas operações em até 90%, como é o caso da sequência adição do
viés–ReLU–dropout na primeira camada neural do modelo BERT. Para a segunda camada,
o mesmo processo, incluindo a normalização dos resultados, é 70% mais rápida com a fusão
de kernels. A estratégia também é empregada para a atualização destes mesmos parâmetros
durante o algoritmo de retropropagação, com otimizações de 64% e 58% respectivamente.

Após a fusão, os autores propõem a otimização das disposições dos tensores
representando-as por um grafo direcionado, onde cada vértice representa uma configuração
possível para determinada operação, com arcos conectando operações subsequentes e
cujos pesos são o tempo de execução da operação e transposição posterior (se necessária),
obtidos empiricamente. Executando um algoritmo de caminho mais curto, é possível
encontrar a configuração ótima. A configuração ótima encontrada é 30% mais rápida no
treinamento da camada de encoding do modelo BERT quando comparado ao Pytorch,
com uma redução de 23% na movimentação de dados entre as memórias, e 20% quando
comparado a uma implementação com TensorFlow com otimizações do compilador XLA.

Li et al. apresenta uma outra estratégia de otimização, denominada Clover: o parti-
cionamento de GPUs entre modelos de tamanhos variáveis. (B. Li, Samsi et al., 2023) A
partir da geração Ampere com a tecnologia MIG (multi-instance GPU — GPU de múltiplas
instâncias), as GPUs NVIDIA podem ser divididas em até sete partições independentes,
em cinco tamanhos: 1, 2, 3, 4, 7, tais que a soma dos tamanhos deve ser sempre sete. Ou
seja, é possível dividir a placa em cinco partições de tamanho 1 e uma de 2, ou dividí-la em
duas partições de tamanho 3 e uma de tamanho 1. As 19 possibilidades de particionamento
podem ser encontradas na figura 2.10.

Figura 2.10: Formas de particionamento disponíveis com a tecnologia MIG em placas NVIDIA (B. Li,

Samsi et al., 2023)

Quando consideramos um modelo de um mesmo tamanho, adequado para partições
pequenas, usar partições menores já pode incorrer em menor gasto de energia como mostra
a figura 2.11, com um certo custo de latência devido à necessidade de disputar recursos da
GPU com outras partições, porém utilizar modelos de tamanhos variados simultaneamente
permite a implementação de modelos mais complexos gastando ainda menos energia.

Os autores propõem encontrar a melhor configuração a partir de um problema de
otimização definido da seguinte maneira:
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Figura 2.11: Latência e emissões de carbono para particionamentos diferentes da GPU utilizando o

mesmo modelo (B. Li, Samsi et al., 2023)

Primeiro, seja 𝑥𝑝 um vetor onde 𝑥
𝑝

𝑖 denota a configuração de particionamento esco-
lhida para a GPU de índice 𝑖, entre as GPUs alocadas para a resolução do problema, e
seja 𝑥𝑣 um vetor onde 𝑥𝑣

𝑖𝑗 o modelo escolhido para a partição 𝑗 da GPU 𝑖. Assim, temos
𝐴(𝑥𝑝, 𝑥𝑣) e 𝐶(𝑥𝑝, 𝑥𝑣), que respectivamente expressam a acurácia e a emissão de CO2 de
um treinamento/inferência com uma configuração e modelos determinados.

Com 𝐴base e 𝐶base representando a acurácia e emissão de gás carbônico do modelo
mais acurado conhecido treinado sem particionamento, podemos calcular o diferencial
de acurácia e energia de (𝑥𝑝, 𝑥𝑣) da seguinte forma:

Δ𝐶 =
𝐶base − 𝐸(𝑥𝑝, 𝑥𝑣) ∗ 𝐼𝐶

𝐶base

onde 𝐼𝐶 é a intensidade de carbono da energia utilizada na implementação, e

Δ𝐴 =
𝐴(𝑥𝑝, 𝑥𝑣) − 𝐴base

𝐴base

A função de otimização, a ser maximizada, é expressa por

𝑓 (𝑥
𝑝
, 𝑥

𝑣
) = 𝜆 ∗ Δ𝐶 + (1 − 𝜆) ∗ Δ𝐴

onde 𝜆 é um parâmetro entre 0 e 1 que define o balanço entre maior acurácia e menor
gasto energético buscado no processo de otimização. A única restrição sugerida pelos
autores é uma restrição de latência máxima 𝐿𝑚𝑎𝑥 na inferência das configurações. Assim,
a otimização pode ser expressa por

max
𝑥𝑝 ,𝑥𝑣

𝑓 (𝑥
𝑝
, 𝑥

𝑣
)

t.q. 𝐿(𝑥𝑝
, 𝑥

𝑣
) ≤ 𝐿𝑚𝑎𝑥

Como o número de configurações possíveis pode ser grande demais para que seja
viável testar todas elas, os autores sugerem representá-las por meio de um grafo bipartido
onde um conjunto de vértices representando modelos diferentes se ligam a outro conjunto
representando os tipos de partições, com arestas cujo peso indica a quantidade de vezes
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em que um modelo específico ocupa um certo tipo de partição dentro da configuração. A
partir dessas representações, aplica-se o algoritmo de arrefecimento simulado (simulated

annealing), descrito no programa 2.2, para encontrar a configuração ótima. A função de
distância usada para definir as vizinhanças no algoritmo é a distância de edição de grafos
(graph edit distance), e a probabilidade de escolher um vizinho 𝑥𝑔′ da configuração 𝑥𝑔

é definida por

𝑃(𝑥
𝑔
, 𝑥

𝑔′
) = 𝑒𝑥𝑝(−

ℎ(𝑥𝑔′) − ℎ(𝑥𝑔)

𝑇
)

onde 𝑇 é o parãmetro de temperatura e

ℎ(𝑥
𝑔
) = −𝑓 (𝑥

𝑔
) ∗ 𝑚𝑖𝑛(1,

𝐿𝑚𝑎𝑥

𝐿(𝑥𝑔)
)

Nos testes realizados pelos autores, o arrefecimento simulado obtém resultados muito
próximos de uma busca exaustiva, em uma fração do tempo de execução, e ainda permite
certa flexibilidade na otimização a partir do parâmetro 𝜆. Em comparação com a implemen-
tação dos maiores modelos sem particionamento, o método Clover conseguiu, para tarefas
de linguagem, utilizando os modelos ALBERT v2 que variam entre 12 e 223 milhões de
parâmetros, reduzir em mais de 80% a emissão de carbono, com um custo de 4% na precisão.
Para modelos de classificação de imagens — os EfficientNet, também da Google, a redução
é um pouco maior, diminuindo a precisão em aproximadamente 2%. Em todos os casos,
como é possível observar no gráfico mais à direita na figura 2.12, a latência é curiosamente
reduzida, ou seja, os gastos com a disputa de recursos pelas partições é compensado pelo
menor número médio de operações realizados por elas.

Figura 2.12: Resultados da técnica CLOVER para tarefas de detecção de objetos, classificação de

imagens e processamento de linguagem natural (B. Li, Samsi et al., 2023)

Programa 2.2 Arrefecimento simulado, como implementado por Li et al. (B. Li, Samsi
et al., 2023)

1 funcao arrefecimento_simulado(X, d, R, 𝐾𝑚𝑎𝑥 , 𝐼𝑚𝑎𝑥 , 𝜆, T, 𝑇𝑚𝑖𝑛)
2 k ← 0
3 i ← 0

cont ⟶
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⟶ cont

4 𝑥𝑔 ← escolha_aleatoria(X)
5 enquanto k < 𝐾𝑚𝑎𝑥 e i < 𝐼𝑚𝑎𝑥

6 𝑥𝑔
′

← vizinho_aleatorio(𝑥𝑔 , X, d)
7 se ℎ(𝑥𝑔

′

, 𝜆) < ℎ(𝑥𝑔 , 𝜆) ou 𝑃(𝑥𝑔 , 𝑥𝑔
′

, 𝑇 ) ≥ aleatorio(0, 1)
8 𝑥𝑔 ←𝑥𝑔

′

9 k ← 0
10 senão

11 k += 1
12 T ← maximo(𝑇𝑚𝑖𝑛, T − R)
13 i += 1
14 retorne 𝑥𝑔

Por fim, uma simples estratégia de redução de energia é limitar a frequência máxima
das GPUs, como propõe Stojkovic et al. (Stojkovic et al., 2024). Para os testes, os autores
utilizam uma implementação da LLM LLama2 em 8 GPUs NVIDIA H100 com entradas e
saídas de três tamanhos diferentes, analisando as nove combinações possíveis para gasto
energético, potência máxima e três métricas de latência:

• time to first token ou TTFT, que denota o tempo até a geração do primeiro token de
saída.

• time between tokens ou TBT, expressando o tempo médio entre tokens gerados

• throughput ou T-put, ou seja, o número de trabalhos de inferência realizados por
segundo

Nos testes, os autores encontraram que existem situações onde reduzir a frequência
diminui o gasto energético sem grande impacto na latência, como é o caso das entradas e
saídas grandes (1024 e 256 tokens, respectivamente), no qual a redução de frequência de
2.0 GHz para 1.2 GHz degrada em menos de 20% as métricas de latência, mas diminui o
gasto energético em aproximadamente 30%. No entanto, a relação entre frequência e gasto
energético nem sempre é proporcional: nas figuras 2.13, observa-se que para entradas
médias diminuir a frequência para 1.8 ou 1.6 GHz tende a aumentar o consumo de energia.
A técnica também potencializa o uso mais intenso de paralelismo de tensores entre as
placas, pois vê-se nas imagens 2.14 que entre o paralelismo de grau 2 (TP2) com alta
frequência e o de grau 8 (TP8) com menor frequência, o gasto energético é similar, porém
o TBT e o TTFT são quase 50% menores para o TP8.
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(a) TTFT (tempo até o primeiro token)

(b) TBT (tempo entre tokens consecutivos)

(c) throughput, ou número de inferências por segundo

(d) potência média das GPUs

(e) energia média consumida pelas GPUs

Figura 2.13: Resultados da redução de frequência das GPUs para inferências de LLMs em três tamanhos

de entrada e saída diferentes (S, M, L) (Stojkovic et al., 2024)
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(a) TTFT (tempo até o primeiro token)

(b) TBT (tempo entre tokens consecutivos)

(c) throughput, ou número de inferências por segundo

(d) potência média das GPUs

(e) energia média consumida pelas GPUs

Figura 2.14: Resultados da redução de frequência das GPUs para inferências de LLMs em três confi-

gurações de paralelismo de tensores distintas (Stojkovic et al., 2024)
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Conclusão

Neste trabalho, foi feito um estudo sobre maneiras de calcular e reduzir a emissão de
CO2 e demais gases poluentes, principalmente a partir da redução do gasto energético, de
aplicações de aprendizado de máquina, com um foco circunstancial em grandes modelos
de linguagem baseados em Transformers.

Percebe-se que a necessidade de se desenvolver formas de estimar as emissões surge da
falta de dados oficiais confiáveis sobre essas emissões. Sobre o carbono incorporado, a falta
de dados ou dados de baixa qualidade tornam o cálculo inviável, mesmo com o nível de
granularidade maior fornecido pelo modelo STEC em relação ao ACT, enquanto o cálculo
do carbono operacional se torna trivial pelo uso de profilers, mas o resultado do profiling é
bastante dependente do hardware utilizado. Logo, mesmo com modelos públicos como os
modelos DeepSeek, é difícil replicar perfeitamente o processo de treinamento e inferência.

Dos métodos de redução, aqueles baseados em otimizar o uso do hardware são prova-
velmente mais promissores no âmbito dos modelos comerciais, tornam o treinamento e
a inferência mais rápidos sem piorar as métricas de qualidade da inferência. No entanto,
é necessário explorar mais as relações de custo-benefício entre as métricas dos modelos
e o custo operacional, para que seja possível aplicar os demais métodos, tornando as
aplicações mais sustentáveis.

É interessante também que trabalhos futuros sejam dedicados a alinhar perspectivas
ecológicas sobre IA/ML com outras teorias de ecologia e sustentabilidade, como o princípio
dos 3 Rs (reduzir, reutilizar e reciclar) e os Objetivos de Desenvolvimento Sustentável
definidos, definidos pelo programa da ONU Transformando o nosso mundo: a Agenda

2030 para o Desenvolvimento Sustentável (Nações Unidas, 2016). Os 17 objetivos não
tratam apenas do cuidado com o meio-ambiente e redução das diversas formas de poluição
ambiental; tratam também de questões humanitárias como o fim da pobreza e da fome
(objetivos 1 e 2), promoção da igualdade de gênero (objetivo 5) e manutenção da paz
(objetivo 16).





33

Referências

[Altman 2025] Sam Altman. “The gentle singularity” (2025). url: https : / / blog .
samaltman.com/the-gentle-singularity (citado na pg. 13).

[Bradbury et al. 2018] James Bradbury et al. JAX: composable transformations of

Python+NumPy programs. Versão 0.3.13. 2018. url: http://github.com/jax-ml/jax
(citado na pg. 14).

[Casson 2023] Adam Casson. “Transformer flops” (2023). url: https://adamcasson.
com/posts/transformer-flops (citado na pg. 15).

[Chatterji et al. 2025] Aaron Chatterji et al. How People Use ChatGPT. Working Paper
34255. National Bureau of Economic Research, set. de 2025. doi: 10.3386/w34255.
url: http://www.nber.org/papers/w34255 (citado na pg. 1).

[Chawla 2025] Avi Chawla. “Transformer vs. mixture of experts in llms” (2025). url:
https://www.dailydoseofds.com/p/transformer-vs-mixture-of-experts-in-llms/
(citado nas pgs. vii, 3).

[Chowdhery et al. 2023] Aakanksha Chowdhery et al. “Palm: scaling language mo-
deling with pathways”. J. Mach. Learn. Res. 24.1 (jan. de 2023). issn: 1532-4435
(citado na pg. 15).

[DeepSeek-AI et al. 2025] DeepSeek-AI et al. DeepSeek-V3 Technical Report. 2025. arXiv:
2412.19437 [cs.CL]. url: https://arxiv.org/abs/2412.19437 (citado na pg. 2).

[Diaz 2025] Jaclyn Diaz. “Why google’s search engine trial is about ai”. NPR.org (2025).
url: https://www.npr.org/2025/04/29/nx-s1-5377353/google-antitrust-remedies-
trial-ai (citado na pg. 1).

[Elsworth et al. 2025] Cooper Elsworth et al. Measuring the environmental impact

of delivering AI at Google Scale. 2025. arXiv: 2508 .15734 [cs.AI]. url: https :
//arxiv.org/abs/2508.15734 (citado na pg. 13).

[Gupta et al. 2022] Udit Gupta et al. “Act: designing sustainable com puter systems
with an architectural carbon modeling tool”. In: Proceedings of The 49th Annual

International Symposium on Computer Architecture (ISCA ’22). ACM, 2022 (citado
nas pgs. vii, 6, 7, 9–11).

https://blog.samaltman.com/the-gentle-singularity
https://blog.samaltman.com/the-gentle-singularity
http://github.com/jax-ml/jax
https://adamcasson.com/posts/transformer-flops
https://adamcasson.com/posts/transformer-flops
https://doi.org/10.3386/w34255
http://www.nber.org/papers/w34255
https://www.dailydoseofds.com/p/transformer-vs-mixture-of-experts-in-llms/
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://www.npr.org/2025/04/29/nx-s1-5377353/google-antitrust-remedies-trial-ai
https://www.npr.org/2025/04/29/nx-s1-5377353/google-antitrust-remedies-trial-ai
https://arxiv.org/abs/2508.15734
https://arxiv.org/abs/2508.15734
https://arxiv.org/abs/2508.15734


34

REFERÊNCIAS

[Hammond e Jones 2009] Geofrrey Hammond e Craig Jones. Embodied Carbon: The

Inventory of Carbon and Energy(ICE). 2ª ed. BSRIA, 2009 (citado na pg. 5).

[He 2022] Horace He. The “Ideal” PyTorch FLOP Counter (with __torch_dispatch__). 2022.
url: https://dev-discuss.pytorch.org/t/the-ideal-pytorch-flop-counter-with-
torch-dispatch/505 (citado na pg. 13).

[Hoffmann et al. 2022] Jordan Hoffmann et al. Training Compute-Optimal Large Lan-

guage Models. 2022. arXiv: 2203.15556 [cs.CL]. url: https://arxiv.org/abs/2203.
15556 (citado nas pgs. vii, 15).

[Ivanov et al. 2021] Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang Li e Torsten
Hoefler. Data Movement Is All You Need: A Case Study on Optimizing Transformers.
2021. arXiv: 2007.00072 [cs.LG]. url: https://arxiv.org/abs/2007.00072 (citado
nas pgs. 15, 25).

[B. Li, Basu Roy et al. 2023] Baolin Li, Rohan Basu Roy et al. “Toward sustainable hpc:
carbon footprint estimation and environmental implications of hpc systems”.
In: Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis. SC ’23. Denver, CO, USA: Association for Com-
puting Machinery, 2023. isbn: 9798400701092. doi: 10.1145/3581784.3607035. url:
https://doi.org/10.1145/3581784.3607035 (citado nas pgs. 8, 9).

[B. Li, Samsi et al. 2023] Baolin Li, Siddharth Samsi, Vijay Gadepally e Devesh Tiwari.
“Clover: toward sustainable ai with carbon-aware machine learning inference
service”. In: Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis. SC ’23. ACM, nov. de 2023, pp. 1–15.
doi: 10.1145/3581784.3607034. url: http://dx.doi.org/10.1145/3581784.3607034
(citado nas pgs. viii, 25–27).

[C. Li et al. 2016] Chao Li, Yi Yang, Min Feng, Srimat Chakradhar e Huiyang Zhou.
“Optimizing memory efficiency for deep convolutional neural networks on gpus”.
In: SC ’16: Proceedings of the International Conference for High Performance Compu-

ting, Networking, Storage and Analysis. 2016, pp. 633–644. doi: 10.1109/SC.2016.53
(citado nas pgs. viii, 21, 23, 24).

[Nações Unidas 2016] Assembleia Geral das Nações Unidas. Transformando nosso

Mundo: A Agenda 2030 para o Desenvolvimento Sustentável. 2016. url: https://www.
mds.gov.br/webarquivos/publicacao/brasil_amigo_pesso_idosa/agenda2030.pdf
(citado na pg. 31).

[O’Brien 2024] Isabel O’Brien. “Data center emissions probably 662% higher than
big tech claims. can it keep up the ruse?” theguardian.com (2024). url: https :
//www.theguardian.com/technology/2024/sep/15/data-center-gas-emissions-
tech (citado na pg. 3).

https://dev-discuss.pytorch.org/t/the-ideal-pytorch-flop-counter-with-torch-dispatch/505
https://dev-discuss.pytorch.org/t/the-ideal-pytorch-flop-counter-with-torch-dispatch/505
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2007.00072
https://arxiv.org/abs/2007.00072
https://doi.org/10.1145/3581784.3607035
https://doi.org/10.1145/3581784.3607035
https://doi.org/10.1145/3581784.3607034
http://dx.doi.org/10.1145/3581784.3607034
https://doi.org/10.1109/SC.2016.53
https://www.mds.gov.br/webarquivos/publicacao/brasil_amigo_pesso_idosa/agenda2030.pdf
https://www.mds.gov.br/webarquivos/publicacao/brasil_amigo_pesso_idosa/agenda2030.pdf
https://www.theguardian.com/technology/2024/sep/15/data-center-gas-emissions-tech
https://www.theguardian.com/technology/2024/sep/15/data-center-gas-emissions-tech
https://www.theguardian.com/technology/2024/sep/15/data-center-gas-emissions-tech


REFERÊNCIAS

35

[Paszke et al. 2019] Adam Paszke et al. “Pytorch: an imperative style, high-performance
deep learning library”. In: Proceedings of the 33rd International Conference on Neural

Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2019
(citado na pg. 13).

[Puvis de Chavannes et al. 2021] Lucas Høyberg Puvis de Chavannes, Mads Guld-
borg Kjeldgaard Kongsbak, Timmie Rantzau e Leon Derczynski. “Hyperpara-
meter power impact in transformer language model training”. In: Proceedings of

the Second Workshop on Simple and Efficient Natural Language Processing. Ed. por
Nafise Sadat Moosavi et al. Virtual: Association for Computational Linguistics,
nov. de 2021, pp. 96–118. doi: 10 .18653/v1/2021 . sustainlp- 1 .12. url: https :
//aclanthology.org/2021.sustainlp-1.12/ (citado nas pgs. vii, viii, 19–21).

[Schwartz et al. 2020] Roy Schwartz, Jesse Dodge, Noah A. Smith e Oren Etzioni.
“Green ai”. Commun. ACM 63.12 (nov. de 2020), pp. 54–63. issn: 0001-0782. doi:
10.1145/3381831. url: https://doi.org/10.1145/3381831 (citado na pg. 13).

[Shehabi et al. 2024] A. Shehabi et al. “2024 united states data center energy usage
report” (2024). url: http://dx.doi.org/10.71468/P1WC7Q (citado na pg. 2).

[Singla et al. 2025] Alex Singla et al. The state of AI in 2025: Agents, innovation, and

transformation. 2025. url: https://www.mckinsey.com/capabilities/quantumblack/
our-insights/the-state-of-ai (acesso em 11/12/2025) (citado nas pgs. vii, 1, 2).

[Sovrasov 2024] Vladislav Sovrasov. ptflops: a flops counting tool for neural networks in

pytorch framework. 2024. url: https://github.com/sovrasov/flops-counter.pytorch
(citado na pg. 13).

[Srivathsan et al. 2024] Bhargs Srivathsan et al. AI power: Expanding data center ca-

pacity to meet growing demand. 2024. url: https://www.mckinsey.com/industries/
technology-media-and-telecommunications/our-insights/ai-power-expanding-
data-center-capacity-to-meet-growing-demand/ (acesso em 09/10/2025) (citado
nas pgs. 2, 5).

[Stojkovic et al. 2024] Jovan Stojkovic, Esha Choukse, Chaojie Zhang, Inigo Goiri e
Josep Torrellas. Towards Greener LLMs: Bringing Energy-Efficiency to the Forefront

of LLM Inference. 2024. arXiv: 2403.20306 [cs.AI]. url: https://arxiv.org/abs/
2403.20306 (citado nas pgs. viii, 28–30).

[Synergy Identifies the World’s Top 20 Locations for Hyperscale Data Centers 2024]
Synergy Identifies the World’s Top 20 Locations for Hyperscale Data Centers.
Rel. técn. Reno, Nevada, USA: Synergy Research Group, 2024 (citado na pg. 3).

[Tannu e Nair 2023] Swamit Tannu e Prashant J. Nair. “The dirty secret of ssds:
embodied carbon”. SIGENERGY Energy Inform. Rev. 3.3 (out. de 2023), pp. 4–9. doi:
10.1145/3630614.3630616. url: https://doi.org/10.1145/3630614.3630616 (citado
nas pgs. vii, 11).

https://doi.org/10.18653/v1/2021.sustainlp-1.12
https://aclanthology.org/2021.sustainlp-1.12/
https://aclanthology.org/2021.sustainlp-1.12/
https://doi.org/10.1145/3381831
https://doi.org/10.1145/3381831
http://dx.doi.org/10.71468/P1WC7Q
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai
https://github.com/sovrasov/flops-counter.pytorch
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/ai-power-expanding-data-center-capacity-to-meet-growing-demand/
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/ai-power-expanding-data-center-capacity-to-meet-growing-demand/
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/ai-power-expanding-data-center-capacity-to-meet-growing-demand/
https://arxiv.org/abs/2403.20306
https://arxiv.org/abs/2403.20306
https://arxiv.org/abs/2403.20306
https://doi.org/10.1145/3630614.3630616
https://doi.org/10.1145/3630614.3630616


36

REFERÊNCIAS

[Team 2025] Qwen Team. Qwen3-Max: Just Scale it. Set. de 2025 (citado na pg. 2).

[TOP500 2025] TOP500. TOP500 List - June 2025. 2025. url: https://top500.org/lists/
top500/list/2025/06/ (acesso em 09/10/2025) (citado na pg. 9).

[Trask et al. 2015] Andrew Trask, David Gilmore e Matthew Russell. Modeling Order

in Neural Word Embeddings at Scale. 2015. arXiv: 1506.02338 [cs.CL]. url: https:
//arxiv.org/abs/1506.02338 (citado na pg. 1).

[Vaswani et al. 2023] Ashish Vaswani et al. Attention Is All You Need. 2023. arXiv:
1706.03762 [cs.CL]. url: https://arxiv.org/abs/1706.03762 (citado na pg. 1).

[Wadenstein e Vanderbauwhede 2025] Mattias Wadenstein e Wim Vander-
bauwhede. “Life cycle analysis for emissions of scientific computing centres”.
The European Physical Journal C 85.8 (ago. de 2025). issn: 1434-6052. doi:
10.1140/epjc/s10052-025-14650-8. url: http://dx.doi.org/10.1140/epjc/s10052-025-
14650-8 (citado na pg. 10).

[Wang et al. 2019] Yue Wang et al. E2-Train: Training State-of-the-art CNNs with Over

80% Energy Savings. 2019. arXiv: 1910.13349 [cs.LG]. url: https://arxiv.org/abs/
1910.13349 (citado nas pgs. vii, 16–18).

[Zhang et al. 2024] Xiaoyang Zhang, Yijie Yang e Dan Wang. “Spatial-temporal em-
bodied carbon models for the embodied carbon accounting of computer systems”.
In: Proceedings of the 15th ACM International Conference on Future and Sustainable

Energy Systems. e-Energy ’24. Singapore, Singapore: Association for Computing
Machinery, 2024, pp. 464–471. isbn: 9798400704802. doi: 10.1145/3632775.3661939.
url: https://doi.org/10.1145/3632775.3661939 (citado nas pgs. vii, 7–9).

https://top500.org/lists/top500/list/2025/06/
https://top500.org/lists/top500/list/2025/06/
https://arxiv.org/abs/1506.02338
https://arxiv.org/abs/1506.02338
https://arxiv.org/abs/1506.02338
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.1140/epjc/s10052-025-14650-8
http://dx.doi.org/10.1140/epjc/s10052-025-14650-8
http://dx.doi.org/10.1140/epjc/s10052-025-14650-8
https://arxiv.org/abs/1910.13349
https://arxiv.org/abs/1910.13349
https://arxiv.org/abs/1910.13349
https://doi.org/10.1145/3632775.3661939
https://doi.org/10.1145/3632775.3661939

	Carbono Incorporado
	Modelos de Cálculo e Estimativa
	Formas de Redução

	Carbono Operacional
	Modelos de Cálculo e Estimativa
	Formas de Redução
	Redução do Número de Operações
	Otimização do Uso do Hardware


	Referências

